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A grid of low metallicity single stars

Szécsi et al. 2014 in prep.
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A grid of low metallicity single stars

Szécsi et al. 2014 in prep.
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Abundance anomalies observed
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Abundance anomalies observed in GCs

extreme & intermediate pop: polluted by hydrogen burning side
products

® CNO-cycle, Ne-Na and Mg-Al chains

either two generations of stars or accretion onto pre-MS low mass stars
(Bastian+ 2013)

need: astrophysical source that can pollute the ISM

caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)

caveat: material stays inside the grav. potential of the cluster
(e.g. not fast stellar wind)

° AGB stars: hot bottom burning (Ventura+2001)
* fast rotating massive stars: close to break-up (Decressin+ 2007)

* supermassive stars (10* Mg): continuum-driven wind
(Denissenkov+ 2014)

° massive binaries: non-conservative mass transfer (De Mink+ 2009)
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The massive binary polluter scenario

* interacting binary system, non-conservative mass transfer

° observational evidence for binaries loosing large amount of mass
(see de Mink+ 2007 for a review)

¢ after H-exhaustion: primary expands, secondary accretes —
spins up
* reaches critical rotation — mass is ejected from the system

° slow ejecta

* deeper layers of primary envelope: nuclearly processed
material!

* hydrogen burning products
* De Mink+2009: 20 Mg + 15 Mg, + 12 days (~0.025 Z)



The massive binary polluter scenario
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The massive binary polluter scenario
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The massive binary polluter scenario

m1=020M, m2=015M_ p=12.00d

de Mink et al. 2009
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A grid of low metallicity single stars

Szécsi et al. 2014 in prep.

composition comparable to GCs
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to the Massive Binary Polluter Scenario
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Single star approach

Szécsi et al. 2014 in prep.
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20 Mg + 15 Mg + 12 days:
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Single star approach
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single stellar tracks

— approximation of Roche lobe
(Eggleton 1983) q = m1/m;:
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20 Mg + 15 Mg + 12 days:

Single star approach:
— initial orbital separation: A =72 Rg

— take the corresponding (slow rotating)
single stellar tracks

— approximation of Roche lobe
(Eggleton 1983) q = m1/m;:

0.49¢%/3

RLi =A
' 70,6923 + In(1 + 4173)

= when R; > RL;: check size and
composition of the primary envelope




Composition and size of primary envelope

single: 20 Mg at Ry > RL;
(+ 15 Mg + 12 days)

"

V]

Q

=

q

he]

c

=]

a

< .10 } 4
12+ |
14 b NR37 Tc8 = 1.843,t = 7.607570768 My

0 5 10 15 20

Total mass [M.]



Composition and size of primary envelope
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Composition and size of primary envelope

single: 20 Mg at R; > RL;
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Single star approach

Assumptions:
* Tmasstransfer < Tmixings Tnucl
* orbit is not (fully) synchronized
* whole envelope is ejected
— detailed binary simulations still needed
Advantages:

¢ detailed calculations of single stars are less difficult —
cover a broad parameter space

* in case of simulating binaries: it helps to decide which
masses, mass ratios and periods to simulate and what to
expect

* give constraints on the massive binary polluter scenaro
even without detailed binary simulations



Single star approach: size of primary envelope
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Single star approach: size of primary envelope
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Single star approach: size of primary envelope
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* Mg-Al problem - possible solutions:
¢ ~100 M, primary losing H-shell burning products
and/or

* the presence of >500 M, primaries in the cluster

* Envelope mass as a function of primary mass:

* assumption of de Mink+09 and Pranczos+Charbonnel’ 06
is supported by my calculations of single stars

* extended for higher masses (up to ~575 M)
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present GC abundance anom. & massive binary polluters
present the idea of single star approach
present my grid of low metallicity single stars

broad range of masses and rotations
composition suitable for GCs, dwarf galaxies, high z objects

give constraints on the envelope mass, test assumptions of
de Mink+09, Bastian+13

test if higher masses / wider periods Thank you
could help the Mg-Al problem

ﬁ for your
H |
Still need to investigate / question marks: g attention”

mass budget; effects of rotation

Al — Mg chain: update the reaction rates

systems interacting at a young age — binary simulations needed

Open to suggestions, comments and questions!
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