How big are stars?

...a tale of Super Giant Stars and Shells

Dory Szécsi

University of Birmingham

Girls in STEM day
12th September 2018

Temperature (Kelvin) /Stellar classification

A "globular" star-cluster = a globular cluster

A "globular" star-cluster = a globular cluster

A "globular" star-cluster = a globular cluster

A "globular" star-cluster = a globular cluster

A "globular" star-cluster = a globular cluster

So what do we know about GCs?

So what do we know about GCs?

- old stars, similar to our Sun

So what do we know about GCs?

- old stars, similar to our Sun

- about a houndred thousand of them

So what do we know about GCs?

- old stars, similar to our Sun

- about a houndred thousand of them
- very densely populated

So what do we know about GCs?

- old stars, similar to our Sun

- about a houndred thousand of them
- very densely populated
- spherical \rightarrow
"globular":)

So what do we know about GCs?

- old stars, similar to our Sun
- about a houndred thousand of them
- very densely populated
- spherical \rightarrow "globular":)
- in the Milky Way, about 150 GCs

So what do we know about GCs?

- old stars, similar to our Sun

- about a houndred thousand of them
- very densely populated
- spherical \rightarrow "globular":)
- in the Milky Way, about 150 GCs
- metal-poor! about 50 times more metal poor than our Sun

So what do we know about GCs?

- old stars, similar to our Sun

- about a houndred thousand of them
- very densely populated
- spherical \rightarrow "globular":)
- in the Milky Way, about 150 GCs
- metal-poor! about 50 times more metal poor than our Sun

Let's go home.

Let's go home.

...okay, maybe not. Just yet. Cause...

Let's go home.

...okay, maybe not. Just yet. Cause...

By taking a closer look, astronomers found...

By taking a closer look, astronomers found...

*Lanthanide series
**Actinide series

$\begin{gathered} \substack{\text { Lramanam } \\ \text { La } \\ \text { La }} \end{gathered}$	${ }_{\text {cenmm }}^{58}$	${ }^{\text {c }}$ Pr	Nd	Pm		Eu	$\mathrm{Gd}^{\text {gramm }}$	Tb	chemsum		${ }^{\text {cetamm }}$ Er	Tm	Yb
	${ }^{140}$		cista	${ }^{114}$									
89	90	91	92	${ }^{93}$	94	95	96	97	${ }^{98}$	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

By taking a closer look, astronomers found...

H	The periodic table of elements																
${ }_{\text {Li }}$	Be										B		$\stackrel{\square}{c}$	N		F	Ne
	Mg												si	${ }^{\text {P }}$	${ }^{\text {s }}$	c	
$\stackrel{3}{k}$	${ }_{\text {cose }}$	Sc	in	v^{v}	Cr			${ }_{\text {a }}^{3}$	${ }^{\text {Ni }}$	${ }^{\text {Piol }}$	${ }^{6}$	a	${ }_{\text {Ge }}$	As	Se	Br	
Rb	$\stackrel{\text { \% }}{ }$	\%	$\stackrel{\square}{\text { zr }}$	Nb	Mo		Ru Rh	Rh ${ }^{\text {R }}$	${ }_{\text {¢ }}{ }_{\text {cis }}$	Ag cid	${ }_{\text {cid }}$,	Sn	sb	Te		
$\begin{array}{\|c} \substack{56 \\ \mathrm{cs} \\ \hline} \end{array}$	${ }^{\text {cosem }}$		${ }_{\text {\% }}^{\text {\% }}$	Ta	\%	ces	cis	\%	${ }_{\text {Pt }}$	为	号	1		Bi	${ }_{\text {Po }}$	A	
					Sticis	\cdots			\%								

*Lanthanide series
**Actinide series

$\begin{gathered} \substack{\text { sommanam } \\ 57 \\ \text { La }} \end{gathered}$	Ce	Pr	Nd	Pm	Sm	$\begin{gathered} \substack{\text { Curcomm } \\ 63 \\ \text { Eu }} \end{gathered}$	Gd	Tb	Dy	Ho	${ }^{\text {Er }}$ cr	Tm	Yb
${ }^{1}$	${ }_{\text {l }}^{14012}$	${ }_{\text {4, }}^{\text {409, }}$	14424	1148	50\%	15188	1597	15893			16]		
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Ac	2004	21104	2s,	Np	P44]	Am	,				Fm		

By taking a closer look, astronomers found...

H	The periodic table of elements																H^{2}
$\stackrel{3}{3}$	Be										B		c	N		\%	Ne
													si	${ }^{\text {P }}$	${ }_{5}^{6}$	cı	Ar
k	${ }_{\text {ca }}$	Sc	in		Cr			${ }_{\text {a }}^{3}$	${ }^{\text {Ni }}$	${ }^{\text {Piol }}$	${ }^{6}$	a	Se	As	Se	${ }^{3}$	Kr
Rb	$\stackrel{\square}{\text { sr }}$	\%	$\stackrel{\square}{\text { zr }}$	Nb	Mo	${ }_{\text {ct }}$	Ru	${ }_{\text {Rh }}$	${ }_{\text {¢ }}{ }_{\text {cis }}$	Ag cid	${ }_{\text {cid }}$	s	Sn	sb	$\stackrel{2}{\text { Te }}$	${ }^{1}$	${ }_{\text {xe }}$
$\stackrel{\text { cs }}{\underline{6 s}}$	${ }_{\text {cas }}$	${ }^{\text {\%xo }}$	${ }_{\text {\% }}^{\text {\% }}$	Ta	\% ${ }^{\text {\% }}$	ces	cris	\%	${ }_{\text {Pt }}{ }_{\text {ctict }}$	cis		${ }^{\circ}$	b	${ }_{\text {Bi }}$	Po	${ }_{\text {At }}$	
			\%		\ldots	\cdots			\%								

*Lanthanide series
**Actinide series

La	${ }_{\text {conmm }}^{58}$	Pr	Nd	Pm		Eu	$\mathrm{Gd}^{\text {gram }}$	Tb	Dy		${ }_{\text {ersiom }}^{68} \mathrm{Er}$	Tm	Yb
$\frac{1389}{}$	${ }_{14012}$		14424	H149			15925						
${ }^{89}$	90	91	92	93	${ }^{94}$	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	2304	Pa	29.03										

By taking a closer look, astronomers found...

*Lanthanide series	$\begin{gathered} 57 \\ \mathrm{La} \end{gathered}$		$\begin{aligned} & \text { ma } \\ & \mathrm{Pr} \end{aligned}$	Nd	$\begin{aligned} & 20.0 \\ & \mathrm{Pm} \end{aligned}$	5	$\begin{aligned} & \text { anchin } \\ & \text { Eu } \end{aligned}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{aligned} & { }^{6051} \\ & \mathrm{~Tb} \end{aligned}$	Dy	$\begin{aligned} & \text { an } \\ & \text { Ho } \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 680 \\ \text { Er } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { mamm } \\ \hline \mathbf{T m} \\ \hline \end{array}$	${ }^{\text {nestam }}$
**Actinide series	$\begin{array}{r} 8 \\ A c \\ A 8 \end{array}$	Th	9	$\stackrel{92}{\mathrm{U}}$	$\begin{gathered} 93 \\ \mathrm{~Np} \end{gathered}$	$\begin{gathered} 94 \\ \mathrm{Pu} \end{gathered}$	Am	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	${ }^{98}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & \text { Fm } \\ & \hline 100 \end{aligned}$	$\begin{aligned} & 1011 \\ & M d \end{aligned}$	No

By taking a closer look, astronomers found...

This is impossible!
In Sun-like stars at least.

high sodium (Na) + low oxygen (O)
 high aluminium (Al) + low magnesium (Mg)

high sodium (Na) + low oxygen (O)
 high aluminium (Al) + low magnesium (Mg)

Antares

high sodium (Na) + low oxygen (O)
 high aluminium (Al) + low magnesium (Mg)

Antares

Supergiant Shells forming new stars

Supergiant Shells forming new stars

This is how GCs might have been born:

Alternative theories... 'dancing' stellar couples:

Alternative theories... 'dancing' stellar couples:

Or ... rapidly rotating stars:

Or ... rapidly rotating stars:

Why not all at once?

Why not all at once?

Okay, this is cool. But who cares?!

Okay, this is cool. But who cares?!

Okay, this is cool. But who cares?!

Okay, this is cool. But who cares?!

