The impossible GW190521

Dorottya Szécsi

6. Oct. 2020 – Köln

Gravitational wave event GW190521 (George)

LIGO/Virgo interferometry

 Abbott et al. (2020a,b)

[arXiv2009.01075] [arXiv2009.01190]

- m1 = 85 (+21/-14) Msun
- m2 = 66 (+17/-18) Msun

The problem... these BHs shouldn't exist!

Why?

• Reason of the BH no go zone:

Pair Instability

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$

Collapse

Explosive O-burning → SN

No remnant!

Ziegler & Freese (2020) [arXiv2010.00254] (1st Oct. 2020)

Filling the Black Hole Mass Gap: Avoiding Pair Instability in Massive Stars through Addition of Non-Nuclear Energy

- an energy source is added to the star in addition to nuclear fusion
- example of an extra energy source is *dark matter annihilation* within the star
- or something else.

Belczynski (2020) [arXiv2009.13526] (28th Sept. 2020)

THE MOST ORDINARY FORMATION OF THE MOST UNUSUAL DOUBLE BLACK HOLE MERGER

- model* "with standard assumptions about input physics"
 *population synthesis
- employing newly estimated uncertainties** on pulsational pair-instability mass-loss
 **see later slide
 - possibility of forming BHs with mass up to ~90 Msun

Liu & Bromm (2020) [arXiv2009.11447] (24th Sept. 2020)

The Population III origin of GW190521

• no real models, just statistics w/ and w/o PI

Farrell et all. (2020) [arXiv2009.06585] (14th Sept. 2020) Is GW190521 the merger of black holes from the first stellar generations?

- Proper models!! ;)
 crappy figures...
- "H-He interactions" modifying the core mass during He-burn.

Figure 2. Kippenhahn diagram of a GENEC non-rotating 85 M_{\odot} model at Z = 0. The red arrow indicates the H-He shell interaction.

Clarkson & Herwig (2020) [arXiv2005.07748] (15th May. 2020)

Convective H-He Interactions in Massive Population III Stellar Evolution Models

- "newly estimated uncertainties" in Belczynski'20
- Extra mixing* → "H-He interactions"** → local nuclear energy release
- <u>3D is needed</u>

*five sets of mixing assumptions (1D magic?!)

**extra fuel (H) for burning

Updated 2020-09-02

Another trial to solve the case of "the impossible GW190521" $_{\rm (George)}$

Dorottya Szécsi

19. Jan. 2021 – Köln

The BHs of GW190521 shouldn't exist...

Why?

• Reason of the BH no go zone:

Pair Instability

Photon pressure drops due to $\gamma\gamma \rightarrow e^{-} \& e^{+}$

Collapse

Explosive O-burning → SN

No remnant!

Updated 2020-09-02

Vink & al. (2020) [arXiv2010.11730] (19th Oct. 2020)

Maximum Black Hole mass across Cosmic Time

- what we need:
 - a star that avoids the PI
 - while keeps enough mass to form a >80 Msun BH
- what they offer:
 - magic tricks with stellar codes (tweaked parameters)

Vink & al. (2020) [arXiv2010.11730] (19th Oct. 2020)

Maximum Black Hole mass across Cosmic Time

- LIST OF MAGIC TRICKS
 - extending "line driven wind" type mass loss from 10kK down to 8kK (?)
 - lowering overshooting efficiency (??)
 - making the wind strength scale with host metallicity (???)

