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* M is calculated in every step and the corresponding M is removed
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Yoon’06: IGRB and SN progenitors at different Z

Z=0.004 Z=0.002

SN I BH (SN 1I) SN II BH (SN II)
0.0 L L 1 Il 0.0 L I L |
10 20 30 40 50 60 10 20 30 40 50 60
My [Mo] My [Mo]
Z=0.001 7=0.00001
0.8 T T

0.6
E L
04
&
02
BH (SN 1) L SN Il BH (SN 1)
0.0 1 | 1 1 0.0 L L L L 1
10 20 30 40 50 60 10 20 30 40 50 60
Monse [Mo] My [Mo]



Yoon’06: IGRB and SN progenitors at different Z
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The infamous Wolf-Rayet mass loss

Progenitors of IGRB and SN Ib/c are WR stars
° scarce observations and complicated physical conditions —

° mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution
...and on the final fate too!

Mass loss recipes used in Yoon’06 for WR stars

* Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001 VA

* enhanced mass loss due to CNO in the surface: M = f - Myos, /
Sur

* ad-hoc approach f~19-Zeno
* probably unphysical
(CNO are ionized at T,f f > 105K) ?4

* How much does it effect the final fate predictions?
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LGRB rate of Yoon’06 — REVISED
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LGRB rate of Yoon’06 — REVISED
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IGRB rate of Yoon'06 — REVISED
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Still open question to discuss:

Which WR mass loss prescription is more valid?
CNO enhanced mass loss
and/or Hamann et al 1995.
Purpose of this study:

insight into stellar evolution + mass loss
how much final fate predictions are changed by mass loss

Waiting for comments and questions!

Thank you for
ﬁ your attention!
K
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The BEC interface: beci

BEC = Binary Evolutionary Code
¢ single and binary stellar systems
* with or without rotation
¢ developed since the 1970s in Fortran
¢ very powerful!
¢ ..but difficult to use

beci = the interface for BEC
* automatized + documented
* easy to learn and use
 transferable, extensible

* and more...



Basic commands 1.

Run a new single stellar evolutionary model

WORKDIR/BEC$ ./beci -single 20 0.8 50 lmc -run

M,»m-:ZO MQ ZZO.S*ZLMC Vini:50 km/s
Check its status

./beci -single 20 0.8 50 Imc -v1

Create a HRD

./beci -single 20 0.8 50 1mc -visualize -HRD

Create a Kippenhahn diagram

./beci -single 20 0.8 50 Imc -visualize -kippenhahn



Basic commands 2.

Get help any time

./beci -help

./beci -help -run

Modify the m.dat from the command line

./beci -single 20 0.8 50 1lmc -mdat IOUT=20 DTMIN_1=1.0d0

Continue a stopped calculation

./beci -single 20 0.8 50 1mc -continue

Create an animation of the composition change

./beci -single 20 0.8 50 Imc -visualize -composition
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More options for single stars in the Manual

° -normal

° -extended

¢® -savetozams
Manual of the BEC interface

° -comeclean

* -obsHRD ArgelanderInsiot i Asteonorie

° -recipes

® -structure

* -elements

* -YcYs

° -yield

e -angmom .
+ —PISN "

Also see the -help
command!



So what about binaries?

Run a new binary stellar evolutionary model

./beci -binary 050 025 1.0 20.00 smc -run

12 S|
MP =50 My M

ini

=25Mg, Z=1.0"Zspic pini=20 days

Check their status
./beci -binary 050 025 1.0 20.00 smc -v1 -v2 -v3

Visualize them on the HRD and Orbit diagram

./beci -binary 050 025 1.0 20.00 smc -visualize

More options for binary stars in the Manual:

°* -mdat -continue -normal -kippenhahn -composition
-recipes -structure -help



...and more

./beci -binary 050 025 1.0 20.00 smc -visualize -anim

m1=050M, m2=025M, p=20.00d
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Handling large grids of stars

Grids created by BEC:
* Yoon et al. 2006, 2012 (low Z, Pop.III)
* Brott et al. 2011 (MW, LMC, SMC)
* Kohler et al. 2014 (LMC)
e Szécsiet al. 2014 (1IZw18)

Common HRD of all stars in the grid

./beci -grid NameOfGrid -gridHRD

More grid commands are available, see the Manual or call

./beci -help -grid



Handling large grids of stars: -gridHRD
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./beci -single 20 0.8 50 Imc -myscript -coolscript Dori

#Hcoolscript.sh

echo "Hi dear friend $1!"

echo "You are working with the star

M=$m Msun - z=$z x Z_$g - v=$v km/s in $path_BEC/bin"
endMS="cat ./m$m-z$z-v$v.$g/$m-$z.plot1 | sed 's/D/E/g’ | awk ’
BEGIN{max=0}{if ($3>max){max=$3;tmax=$1}} END{print tmax}’’
endMSMyr="echo $endMS | awk “{printf "%1.3f", $1/1000000 }"°
echo "Main sequence lifetime: $endMSMyr Myr"

echo "Bye! :)"

. J

Result

Hi dear friend Dori!
You are working with the star
M=20 Msun - z=0.8 x Z_1lmc - v=50 km/s in $WORKDIR/BEC/bin

Main sequence lifetime: 7.886 Myr
Bye! :)




Thank you for your attention!

Program files are available here:

/vol/cstorage/raidi18/dorottya/BECinterface

Copy the files in your $WORKDIR and call

./beci -setup

it and

Please try

find bugs!
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