Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #12

NCU, Summer Semester 2022

Previously on GW-progenitors...

Let's play!

Zero-age Main Seq.

Roche-lobe overflow: stable mass transfer

Wolf-Rayet star (naked He-star with strong emission lines)

Supernova may kick out the companion! Survival rate?

Accreting black hole: High-Mass X-ray Binary (observed: periodic pulsations in X-rays)

Some other scenarios...

Credit: Mapelli'21

There are more...:D

Credit: Vigna-Gomez+18

And even more...

This one makes it clear that there are various outcomes based on the SN kick.

Credit: Alice Froll

Degeneracy

remember: γ is a boson

- <u>Imagine</u>: plasma (of fermions, i.e.: e⁻,p⁺,n⁰...)
 - at normal densities: thermal pressure (ideal gas)
 - let's cool it and compress it repeatedly!
 - at some point, Pauli exclusion principle turns on
 - forbids the fermions to occupy identical quantum states
 - thus, if they are forced closer, they must be be placed at different energy levels → extra pressure (a *very* strong one)
- can happen to: only e⁻ (=WD) **or** p⁺&n⁰&e⁻ (=NS)

Funfact: degeneracy pressure depends only weakly on the temperature. Increasing the temperature of degenerate stars has a minor effect on the structure.

Increasing the temperature of degenerate stars has a minor effect on the structure.

HMXB = High-mass X-ray binary

Observed: ~ 200 LMXB in the MW some more in other gals. > 100 HMXB in MW e.g. *Cygnus X-1*

- sister object: LMXB = Low-mass X-ray binary
- X-rays are produced by the matter falling from the (stellar) companion to the MS or BH

- if the companion is a low-mass star (or a WD): LMXB

periodic X-ray pulses

- if it's a massive star: HMXB
- Massive stars have strong winds! It contributes.

HMXB's

LMXB's

Microquasars

- basically HMXBs which also emit in radio
 - the source of the radio emission is two jets* (*see next slide)
 - Cygnus-X1 is also a microquasar
- name comes from 'quasars'

also known as 'quasi-stellar object" (QSO) - discovered in the 50s as radio sources of unknown origin

- galaxies where the central BH eats up the stars...
- \rightarrow active galactic nucleus (AGN)
- powered by a *supermassive* BH ($\geq 10^{6}$ – 10^{9} M_{\odot}) (as opposed to a *stellar mass* BH as in a HMXB/microquasar)
- THIS WEEK'S MOST EXCITING NEWS!!

not a very active nucleus (fortunately) Capturing our MW's central BH by the

"Event Horizon Telescope" (not a real telescope; but a collaboration of radio observatories & clevera data reduction techniques :D)

 $4x10^6 M_{\odot}$

And also microquasars, of course.

Jets (in astronomy)

Actual observation (2021, LOFAR):

77 spectral features (breaking) high energies cannot be explained otherwise Credit: Sweijen/LOF short-living GRBs AGNs Artistic image of the same stuff: Artistic image: long-living (timescales are proportional to the mass of the central BH) Credit: Timmerman/LOFAR

→ sub-Solar metallicities?
→ fast-rotating stars?
→ stars in a binary system?

What about a metal-poor, fast rotating binary system?

→ sub-Solar metallicities?
→ fast-rotating stars?
→ stars in a binary system?

What about a metal-poor, fast rotating binary system?

Let's put two of them next to each other on a (very) close orbit! Chemically-homogenesously evolving star:

no coreenv. structure

Chemically-homogenesously evolving star:

+

no coreenv. structure \square

What do chem.hom. evolving stars look like?

→ sub-Solar metallicities?
→ fast-rotating stars?
→ stars in a binary system?

What about a metal-poor, fast rotating binary system?

Let's put two of them next to each other on a (very) close orbit! Chemically-homogenesously evolving star:

no coreenv. structure

Chemically-homogenesously evolving star:

+

no coreenv. structure \square

Gravitational waves... theoretical origin!

e.g. <u>Szécsi</u>′17a <u>Szécsi</u>′17b Bagoly,<u>Szécsi</u>+16 Marchant+16,17

Gravitational waves... theoretical origin!

Explosions 2 Black Holes (or Neutron Stars)

Credit: Marchant+16

Possible exam question ;)

Possible exam question ;)

explain a binary evolution cartoon scientifically!

• **NOT** the same thing as binary evolutionary simulations

meaning: 'detailed' evolutionary computations e.g. with MESA

• **NOT** the same thing as binary evolutionary simulations

meaning: 'detailed' evolutionary computations e.g. with MESA

(yes, MESA can run binaries too)

• **NOT** the same thing as binary evolutionary simulations

meaning: 'detailed' evolutionary computations e.g. with MESA

(yes, MESA can run binaries too)

Remember the Initial Mass Function (IMF)?

Pop.synth. starts with that.

But binaries make life complicated.

REMINDER: The Initial Mass Function (IMF)

REMINDER: The Initial Mass Function (IMF)

(*single* stars)

Let's think!

- How would you "convert"
 between the lines and the dots?
- Meaning:
 - how would you
 compare
 theoretical
 predictions with
 observations?

2 # MESA revision number =

Zinit

3 # -----

4 # Yinit

11701

[Fe/H]

[a/Fe] v/vcrit

	rrinki sindarran Landini sindarran efeksi sindarran	I DAMAY SALE	
			INER /
	3		
		1 7 7 12	THE A
AND BEET V			
	5		

5#	0.2511 1.42857E-03 -1.00	0.00 0.00				
7 #	initial_mass N_pts N_	EEP N_col phase	type			
8 #	1.9999727046E+01 808	8 73 YES	high-mass			
9 #	EEPs: 1 202 35	3 454 605	631 707	808		
10 #	•					
11 #		1	2	3	4	5
12 #	star_a	ige	star_mass	star_mdot	log_dt	he_core_mass
13	2.7320575584293762E+0	05 1.999972	7045763130E+001	-6.6667141481350412E-009	4.6121780058570057E+000	0.0000000000000000E+000
14	2.7345019073205121E+0	05 1.999972	5407394834E+001	-6.6668930715861210E-009	4.6125719424045064E+000	0.0000000000000000E+000
15	2.7369462562116480E+0	05 1.999972	3769026541E+001	-6.6670719950372001E-009	4.6129658789520063E+000	0.00000000000000000E+000
16	2.7393906051027833E+0	05 1.999972	2130658245E+001	-6.6672509184882791E-009	4.6133598154995070E+000	0.0000000000000000E+000
17	2.7418349539939192E+0	05 1.999972	0492289949E+001	-6.6674298419393581E-009	4.6137537520470087E+000	0.0000000000000000E+000
18	2.7442793028850551E+0	05 1.999971	8853921653E+001	-6.6676087653904380E-009	4.6141476885945094E+000	0.0000000000000000E+000
19	2.7467236517761904E+0	05 1.999971	7215553360E+001	-6.6677876888415162E-009	4.6145416251420093E+000	0.0000000000000000E+000
20	2.7491680006673269E+0	05 1.999971	5577185061E+001	-6.6679666122925961E-009	4.6149355616895100E+000	0.00000000000000000E+000
21	2.7516123495584622E+0	05 1.999971	3938816765E+001	-6.6681455357436759E-009	4.6153294982370108E+000	0.0000000000000000E+000
22	2.7540566984495980E+0	05 1.999971	2300448472E+001	-6.6683244591947550E-009	4.6157234347845106E+000	0.0000000000000000E+000
23	2.7565010473407339E+0	05 1.999971	0662080176E+001	-6.6685033826458340E-009	4.6161173713320123E+000	0.0000000000000000E+000
24	2.7589453962318692E+0	05 1.999970	9023711880E+001	-6.6686823060969130E-009	4.6165113078795130E+000	0.0000000000000000E+000
25	2.7613897451230051E+0	05 1.999970	7385343584E+001	-6.6688612295479929E-009	4.6169052444270129E+000	0.00000000000000000E+000
26	2.7638340940141404E+0	05 1.999970	5746975291E+001	-6.6690401529990719E-009	4.6172991809745136E+000	0.0000000000000000E+000
27	2.7662784429052763E+0	05 1.999970	4108606995E+001	-6.6692190764501510E-009	4.6176931175220144E+000	0.0000000000000000E+000
28	2.7687227917964122E+0	05 1.999970	2470238695E+001	-6.6693979999012308E-009	4.6180870540695151E+000	0.0000000000000000E+000
29	2.7711671406875481E+0	05 1.999970	0831870403E+001	-6.6695769233523099E-009	4.6184809906170159E+000	0.0000000000000000E+000
30	2.7736114895786840E+0	05 1.999969	9193502106E+001	-6.6697558468033889E-009	4.6188749271645166E+000	0.0000000000000000E+000
31	2.7760558384698193E+0	05 1.999969	7555133814E+001	-6.6699347702544679E-009	4.6192688637120174E+000	0.0000000000000000E+000
32	2.7785001873609552E+0	05 1.999969	5916765514E+001	-6.6701136937055478E-009	4.6196628002595173E+000	0.0000000000000000E+000

2 # MESA revision number =

Zinit

initial_mass N_pts 999727046E+01 808

3 # -----

8 # 1.9999727046E+01

5 # 0.2511 1.42857E-03

6 # -----

4 # Yinit

7 #

11701

N_EEP 8

[a/Fe]

0.00

N_col

73

v/vcrit

0.00

phase

YES

type

[Fe/H]

-1.00

Age, Mass, Radius, T_{eff} [K], $log(L/L_{\odot})$, Massloss rate...

	8 # 1.9999	727046E+01	808	- 6	3 73	3 YES	high-	mass				
	9 # EEPs:	1	202	353	454	605	631	707	808			
1	0 #											
1	1#			1				2		3	4	5
1	2 #		st	ar age			st	ar mass		star mdot	log dt	he core mass
1	.3	2.7320575	58429376	2E+005		1.9999727	0457631	30E+001	-	6.6667141481350412E-009	4.6121780058570057E+000	0.000000000000000E+000
1	.4	2.7345019	07320512	1E+005		1.9999725	64073948	34E+001	-	6.6668930715861210E-009	4.6125719424045064E+000	0.0000000000000000E+000
1	.5	2.7369462	56211648	0E+005		1.9999723	37690265	41E+001	-	6.6670719950372001E-009	4.6129658789520063E+000	0.0000000000000000E+000
1	.6	2.7393906	05102783	3E+005		1.9999722	21306582	45E+001	-	6.6672509184882791E-009	4.6133598154995070E+000	0.0000000000000000E+000
1	.7	2.7418349	53993919	2E+005		1.9999720	4922899	49E+001	-	6.6674298419393581E-009	4.6137537520470087E+000	0.0000000000000000E+000
1	.8	2.7442793	02885055	1E+005		1.9999718	8539216	53E+001	-	6.6676087653904380E-009	4.6141476885945094E+000	0.0000000000000000E+000
1	.9	2.7467236	51776190	4E+005		1.9999717	2155533	60E+001	-	6.6677876888415162E-009	4.6145416251420093E+000	0.0000000000000000E+000
2	0	2.7491680	00667326	9E+005		1.9999715	5771850	61E+001	-	6.6679666122925961E-009	4.6149355616895100E+000	0.000000000000000E+000
2	1	2.7516123	49558462	2E+005		1.9999713	9388167	65E+001	-	6.6681455357436759E-009	4.6153294982370108E+000	0.0000000000000000E+000
2	2	2.7540566	98449598	0E+005		1.9999712	3004484	72E+001	-	6.6683244591947550E-009	4.6157234347845106E+000	0.000000000000000E+000
2	3	2.7565010	47340733	9E+005		1.9999710	6620801	76E+001	-	6.6685033826458340E-009	4.6161173713320123E+000	0.000000000000000E+000
2	4	2.7589453	96231869	2E+005		1.9999709	0237118	80E+001	-	6.6686823060969130E-009	4.6165113078795130E+000	0.000000000000000E+000
2	5	2.7613897	45123005	1E+005		1.9999707	3853435	84E+001	-	6.6688612295479929E-009	4.6169052444270129E+000	0.000000000000000E+000
2	6	2.7638340	94014140	4E+005		1.9999705	7469752	91E+001	-	6.6690401529990719E-009	4.6172991809745136E+000	0.0000000000000000E+000
2	7	2.7662784	42905276	3E+005		1.9999704	1086069	95E+001	-	6.6692190764501510E-009	4.6176931175220144E+000	0.0000000000000000E+000
2	8	2.7687227	91796412	2E+005		1.9999702	4702386	95E+001	-	6.6693979999012308E-009	4.6180870540695151E+000	0.0000000000000000E+000
2	9	2.7711671	40687548	1E+005		1.9999700	8318704	03E+001	-	6.6695769233523099E-009	4.6184809906170159E+000	0.0000000000000000E+000
3	Θ	2.7736114	89578684	0E+005		1.9999699	91935021	06E+001	-	6.6697558468033889E-009	4.6188749271645166E+000	0.0000000000000000E+000
3	1	2.7760558	38469819	3E+005		1.9999697	5551338	14E+001	-	6.6699347702544679E-009	4.6192688637120174E+000	0.0000000000000000E+000
3	2	2.7785001	87360955	2E+005		1.9999695	9167655	14E+001	-	6.6701136937055478E-009	4.6196628002595173E+000	0.0000000000000000E+000

2 # MESA revision number =

3 # -----

8 # 1.9999727046E+01

5 # 0.2511 1.42857E-03

6 # -----

4 # Yinit

7 #

11701

[a/Fe]

0.00

v/vcrit

0.00

type

YES high-mass

Zinit [Fe/H]

-1.00

initial_mass N_pts N_EEP N_col phase 999727046E+01 808 8 73 YES

HR-diagram

Age, Mass, Radius, T_{eff} [K], log(L/L_☉), Massloss rate...

9 # EEPs	5: 1 202 353	454 605 631 707	808		
10 #	1	2	3	4	5
12 #	star age	star mass	star mdot	log dt	he core mass
13	2.7320575584293762E+005	1.9999727045763130E+001	-6.6667141481350412E-009	4.6121780058570057E+000	0.00000000000000000E+000
14	2.7345019073205121E+005	1.9999725407394834E+001	-6.6668930715861210E-009	4.6125719424045064E+000	0.000000000000000E+000
15	2.7369462562116480E+005	1.9999723769026541E+001	-6.6670719950372001E-009	4.6129658789520063E+000	0.000000000000000E+000
16	2.7393906051027833E+005	1.9999722130658245E+001	-6.6672509184882791E-009	4.6133598154995070E+000	0.000000000000000E+000
17	2.7418349539939192E+005	1.9999720492289949E+001	-6.6674298419393581E-009	4.6137537520470087E+000	0.0000000000000000E+000
18	2.7442793028850551E+005	1.9999718853921653E+001	-6.6676087653904380E-009	4.6141476885945094E+000	0.0000000000000000E+000
19	2.7467236517761904E+005	1.9999717215553360E+001	-6.6677876888415162E-009	4.6145416251420093E+000	0.000000000000000E+000
20	2.7491680006673269E+005	1.9999715577185061E+001	-6.6679666122925961E-009	4.6149355616895100E+000	0.00000000000000000E+000
21	2.7516123495584622E+005	1.9999713938816765E+001	-6.6681455357436759E-009	4.6153294982370108E+000	0.00000000000000000E+000
22	2.7540566984495980E+005	1.9999712300448472E+001	-6.6683244591947550E-009	4.6157234347845106E+000	0.000000000000000E+000
23	2.7565010473407339E+005	1.9999710662080176E+001	-6.6685033826458340E-009	4.6161173713320123E+000	0.000000000000000E+000
24	2.7589453962318692E+005	1.9999709023711880E+001	-6.6686823060969130E-009	4.6165113078795130E+000	0.000000000000000E+000
25	2.7613897451230051E+005	1.9999707385343584E+001	-6.6688612295479929E-009	4.6169052444270129E+000	0.00000000000000000E+000
26	2.7638340940141404E+005	1.9999705746975291E+001	-6.6690401529990719E-009	4.6172991809745136E+000	0.00000000000000000E+000
27	2.7662784429052763E+005	1.9999704108606995E+001	-6.6692190764501510E-009	4.6176931175220144E+000	0.00000000000000000E+000
28	2.7687227917964122E+005	1.9999702470238695E+001	-6.6693979999012308E-009	4.6180870540695151E+000	0.00000000000000000E+000
29	2.7711671406875481E+005	1.9999700831870403E+001	-6.6695769233523099E-009	4.6184809906170159E+000	0.0000000000000000E+000
30	2.7736114895786840E+005	1.9999699193502106E+001	-6.6697558468033889E-009	4.6188749271645166E+000	0.0000000000000000E+000
31	2.7760558384698193E+005	1.9999697555133814E+001	-6.6699347702544679E-009	4.6192688637120174E+000	0.0000000000000000E+000
32	2.7785001873609552E+005	1.9999695916765514E+001	-6.6701136937055478E-009	4.6196628002595173E+000	0.000000000000000E+000

1 # MIST version number = 10.1 2 # MESA revision number = 11701

Zinit [Fe/H]

808

initial_mass N_pts N_EEP

-1.00

[a/Fe] v/vcrit

N col

73

0.00

phase

YES

type

high-mass

0.00

8

3 # -----

5 # 0.2511 1.42857E-03

8 # 1,9999727046E+01

6 # -----

4 # Yinit

7#

HR-diagram

Age, Mass, Radius, T_{eff} [K], log(L/L_☉), Massloss rate...

9 # EEPs	s: 1 202 353	454 605 631 707	808		
11 #	1	2	3	4	5
12 #	star age	star mass	star mdot	log dt	he core mass
13	2.7320575584293762E+005	1.9999727045763130E+001	-6.6667141481350412E-009	4.6121780058570057E+000	0.000000000000000E+000
14	2.7345019073205121E+005	1.9999725407394834E+001	-6.6668930715861210E-009	4.6125719424045064E+000	0.000000000000000E+000
15	2.7369462562116480E+005	1.9999723769026541E+001	-6.6670719950372001E-009	4.6129658789520063E+000	0.000000000000000E+000
16	2.7393906051027833E+005	1.9999722130658245E+001	-6.6672509184882791E-009	4.6133598154995070E+000	0.000000000000000E+000
17	2.7418349539939192E+005	1.9999720492289949E+001	-6.6674298419393581E-009	4.6137537520470087E+000	0.000000000000000E+000
18	2.7442793028850551E+005	1.9999718853921653E+001	-6.6676087653904380E-009	4.6141476885945094E+000	0.000000000000000E+000
19	2.7467236517761904E+005	1.9999717215553360E+001	-6.6677876888415162E-009	4.6145416251420093E+000	0.000000000000000E+000
20	2.7491680006673269E+005	1.9999715577185061E+001	-6.6679666122925961E-009	4.6149355616895100E+000	0.000000000000000E+000
21	2.7516123495584622E+005	1.9999713938816765E+001	-6.6681455357436759E-009	4.6153294982370108E+000	0.000000000000000E+000
22	2.7540566984495980E+005	1.9999712300448472E+001	-6.6683244591947550E-009	4.6157234347845106E+000	0.000000000000000E+000
23	2.7565010473407339E+005	1.9999710662080176E+001	-6.6685033826458340E-009	4.6161173713320123E+000	0.000000000000000E+000
24	2.7589453962318692E+005	1.9999709023711880E+001	-6.6686823060969130E-009	4.6165113078795130E+000	0.000000000000000E+000
25	2.7613897451230051E+005	1.9999707385343584E+001	-6.6688612295479929E-009	4.6169052444270129E+000	0.000000000000000E+000
26	2.7638340940141404E+005	1.9999705746975291E+001	-6.6690401529990719E-009	4.6172991809745136E+000	0.000000000000000E+000
27	2.7662784429052763E+005	1.9999704108606995E+001	-6.6692190764501510E-009	4.6176931175220144E+000	0.000000000000000E+000
28	2.7687227917964122E+005	1.9999702470238695E+001	-6.6693979999012308E-009	4.6180870540695151E+000	0.000000000000000E+000
29	2.7711671406875481E+005	1.9999700831870403E+001	-6.6695769233523099E-009	4.6184809906170159E+000	0.000000000000000E+000
30	2.7736114895786840E+005	1.9999699193502106E+001	-6.6697558468033889E-009	4.6188749271645166E+000	0.000000000000000E+000
31	2.7760558384698193E+005	1.9999697555133814E+001	-6.6699347702544679E-009	4.6192688637120174E+000	0.000000000000000E+000
32	2.7785001873609552E+005	1.9999695916765514E+001	-6.6701136937055478E-009	4.6196628002595173E+000	0.0000000000000000E+000

(*single* stars)

Let's think!

number ratio of MS vs. RSG stars

IMPORTANT

• Stellar evolution modelling

• Synthetic population modelling

IMPORTANT

 Stellar evolution modelling

- based on first principles
 (5 stellar equations)
- follows one star's life at the time
- IMF is not yet considered
- result is *a line* ('track') in the HR-diagram

• Synthetic population modelling

- <u>relies</u> on stellar evolution modelling
- does not simulate the individual star's life (typically)
- IMF is taken into account
- result is a *statistically meaningful* prediction
 about a *population*

IMPORTANT • • •

Exam warning! :P

- Stellar evolution modelling
- based on first
 principles
 (5 stellar equations)
- follows one star's life at the time
- IMF is not yet considered
- result is *a line* ('track') in the HR-diagram

• Synthetic population modelling

- <u>relies</u> on stellar evolution modelling
- does not simulate the individual star's life (typically)
- IMF is taken into account
- result is a *statistically meaningful* prediction
 about a *population*

IMPORTANT • • •

Exam warning! :P

Stellar evolution

Population synthesis

- Synthetic population:
 time-dependence
 - IMFstar-formation
 - history...

stars / stellar models ric population ng on stellar on modelling t simulate the ial star's life

ken into

stellar population

IMF

meaningful prediction about a *population*

What about binaries??

• 2 stars instead of 1

- 2 stars instead of 1
 - both have their individual IMFs

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

• plus a *lot* of assumptions about the evolution

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

- plus a lot of assumptions about the evolution
 - mass transfer (stable/unstable? conservative/non-conservative? ...)

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

- plus a lot of assumptions about the evolution
 - mass transfer (stable/unstable? conservative/non-conservative? ...)
 - Common Envelope phase (outcome: merger or survival? separation afterwards?)

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

- plus a lot of assumptions about the evolution
 - mass transfer (stable/unstable? conservative/non-conservative? ...)
 - Common Envelope phase (outcome: merger or survival? separation afterwards?)
 - supernova physics... and the kick.

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

(related?)

- plus a lot of assumptions about the evolution
 - mass transfer (stable/unstable? co. rvative/non-conservative? ...)
 - Common Envelope phase (outcome: me separation afterwards?)
 - supernova physics... and the <u>kick</u>.

on top of what we already don't know about *single* stars' evolution

- 2 stars instead of 1
 - individual IMFs - both ha
- orbital sep
- Genachive resea - Initial Orbital Per same kind of thing as the IMP i.e. an observation-based statistical
- plus a *lot* of assumptions about
 - mass transfer (stable/unstable? co. rvative/non-con ative? ...)
 - Common Envelope phase (outcome: me separation afterwards?)
 - supernova physics... and the kick.

on top of what we already don't know about *single* stars' evolution

bn

(related?)

= natal kicks which happen when the NS is born also see: pulsar kick, NS kick, SN kick

 happens for single-star supernovae too

 natal kick
 which happen when the NS is born also see: pulsar kick, NS kick, SN kick
 needs: assymetric explosion

- happens for single-star supernovae too

 natal kick
 which happen when the NS is born also see: pulsar kick, NS kick, SN kick
 needs: assymetric explosion
- in binaries, one SN may kick out the companion

- happens for single-star supernovae too

 natal kick
 which happen when the NS is born also see: pulsar kick, NS kick, SN kick
 needs: assymetric explosion
- in binaries, one SN may kick out the companion
- survival rate is uncertain

- happens for single-star supernovae too

 natal kick
 which happen when the NS is born also see: pulsar kick, NS kick, SN kick
 needs: assymetric explosion
- in binaries, one SN may kick out the companion
- survival rate is uncertain
 - but in pop.synth., drawn from a – you guessed it – statistical distribution :D

cf. Mandel & Müller (2020)