Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #13

NCU, Summer Semester 2022

Previously on GW-progenitors...

Population synthesis on *binaries*

• **NOT** the same thing as binary evolutionary simulations

meaning: 'detailed' evolutionary computations e.g. with MESA

(yes, MESA can run binaries too)

Remember the Initial Mass Function (IMF)?

Pop.synth. starts with that.

But binaries make life complicated.

REMINDER: The Initial Mass Function (IMF)

(*single* stars)

Let's think!

- How would you "convert"
 between the lines and the dots?
- Meaning:
 - how would you
 compare
 theoretical
 predictions with
 observations?

1 # MIST version number = 10.1 2 # MESA revision number = 11701

Zinit [Fe/H]

808

initial_mass N_pts N_EEP

-1.00

[a/Fe] v/vcrit

N col

73

0.00

phase

YES

type

high-mass

0.00

8

3 # -----

5 # 0.2511 1.42857E-03

8 # 1,9999727046E+01

6 # -----

4 # Yinit

7#

HR-diagram

Age, Mass, Radius, T_{eff} [K], log(L/L_☉), Massloss rate...

9 # EEPs	s: 1 202 353	454 605 631 707	808		
11 #	1	2	3	4	5
12 #	star age	star mass	star mdot	log dt	he core mass
13	2.7320575584293762E+005	1.9999727045763130E+001	-6.6667141481350412E-009	4.6121780058570057E+000	0.000000000000000E+000
14	2.7345019073205121E+005	1.9999725407394834E+001	-6.6668930715861210E-009	4.6125719424045064E+000	0.000000000000000E+000
15	2.7369462562116480E+005	1.9999723769026541E+001	-6.6670719950372001E-009	4.6129658789520063E+000	0.000000000000000E+000
16	2.7393906051027833E+005	1.9999722130658245E+001	-6.6672509184882791E-009	4.6133598154995070E+000	0.000000000000000E+000
17	2.7418349539939192E+005	1.9999720492289949E+001	-6.6674298419393581E-009	4.6137537520470087E+000	0.000000000000000E+000
18	2.7442793028850551E+005	1.9999718853921653E+001	-6.6676087653904380E-009	4.6141476885945094E+000	0.000000000000000E+000
19	2.7467236517761904E+005	1.9999717215553360E+001	-6.6677876888415162E-009	4.6145416251420093E+000	0.000000000000000E+000
20	2.7491680006673269E+005	1.9999715577185061E+001	-6.6679666122925961E-009	4.6149355616895100E+000	0.000000000000000E+000
21	2.7516123495584622E+005	1.9999713938816765E+001	-6.6681455357436759E-009	4.6153294982370108E+000	0.000000000000000E+000
22	2.7540566984495980E+005	1.9999712300448472E+001	-6.6683244591947550E-009	4.6157234347845106E+000	0.000000000000000E+000
23	2.7565010473407339E+005	1.9999710662080176E+001	-6.6685033826458340E-009	4.6161173713320123E+000	0.000000000000000E+000
24	2.7589453962318692E+005	1.9999709023711880E+001	-6.6686823060969130E-009	4.6165113078795130E+000	0.000000000000000E+000
25	2.7613897451230051E+005	1.9999707385343584E+001	-6.6688612295479929E-009	4.6169052444270129E+000	0.000000000000000E+000
26	2.7638340940141404E+005	1.9999705746975291E+001	-6.6690401529990719E-009	4.6172991809745136E+000	0.000000000000000E+000
27	2.7662784429052763E+005	1.9999704108606995E+001	-6.6692190764501510E-009	4.6176931175220144E+000	0.000000000000000E+000
28	2.7687227917964122E+005	1.9999702470238695E+001	-6.6693979999012308E-009	4.6180870540695151E+000	0.000000000000000E+000
29	2.7711671406875481E+005	1.9999700831870403E+001	-6.6695769233523099E-009	4.6184809906170159E+000	0.000000000000000E+000
30	2.7736114895786840E+005	1.9999699193502106E+001	-6.6697558468033889E-009	4.6188749271645166E+000	0.000000000000000E+000
31	2.7760558384698193E+005	1.9999697555133814E+001	-6.6699347702544679E-009	4.6192688637120174E+000	0.000000000000000E+000
32	2.7785001873609552E+005	1.9999695916765514E+001	-6.6701136937055478E-009	4.6196628002595173E+000	0.0000000000000000E+000

Population synthesis on *binaries*

- 2 stars instead of 1
 - both have their individual IMFs
- orbital separation!
 - Initial Orbital Period Distribution same kind of thing as the IMF but for the period, i.e. an observation-based statistical distribution

- plus a lot of assumptions about the evolution
 - mass transfer (stable/unstable? conservative/non-conservative? ...)
 - Common Envelope phase (outcome: merger or survival? separation afterwards?)
 - supernova physics... and the kick.

Population synthesis on *binaries*

- 2 stars instead of 1
 - individual IMFs - both ha
- orbital sep
- Genachive resea - Initial Orbital Per same kind of thing as the IMP i.e. an observation-based statistical
- plus a *lot* of assumptions about
 - mass transfer (stable/unstable? co. rvative/non-con ative? ...)
 - Common Envelope phase (outcome: me separation afterwards?)
 - supernova physics... and the kick.

on top of what we already don't know about *single* stars' evolution

bn

(related?)

Kicks

- happens for single-star supernovae too

 natal kick
 which happen when the NS is born also see: pulsar kick, NS kick, SN kick
 needs: assymetric explosion
- in binaries, one SN may kick out the companion
- survival rate is uncertain
 - but in pop.synth., drawn from a – you guessed it – statistical distribution :D

cf. Mandel & Müller (2020)

IMPORTANT • • •

Exam warning! :P

- Stellar evolution modelling
- based on first
 principles
 (5 stellar equations)
- follows one star's life at the time
- IMF is not yet considered
- result is *a line* ('track') in the HR-diagram

• Synthetic population modelling

- <u>relies</u> on stellar evolution modelling
- does not simulate the individual star's life (typically)
- IMF is taken into account
- result is a *statistically meaningful* prediction
 about a *population*

...the last steps!

• We need to know the *history* of how the stars are being born...

• We need to know the *history* of how the stars are being born...

• We need to know the *history* of how the stars are being born...

We need all these to do (binary) population synthesis.

Simulating a galaxy... or starcluster

Simulating a galaxy... or starcluster

• This is what we need to predict GW-event rates from synthetic populations

edict GW-event rates

How many GW events happen IN THE UNIVERSE (per year)?

a star-cluster or galaxy: one star-formation event of size (e.g.) $10^7 M_{\odot}$ aLIGO/Virgo detectors observe GWs from the whole Universe...

<u> </u>		initial distributions
MIST version number = 10.1 Mist version number = 1121 Yinit Zinit [Fe/n] 2/761 Yinit Zinit [Fe/n] 1.00 1 202 30 454 05 05 05 05 05 1 1202 30 454 005 031 707 085 1 2 72057554/32576/06 1 0907706/37518/68-001 0.666939715612100 0.100 0.00000000000000000000000000000000000		Aug Aug Aug Aug Aug Aug Aug Aug
2 2.751397431240514065 2.777517457765146754816-05 31 2.77751458776540195405 32 2.777514687576540195405 32 2.77551485776540195405 32 2.7755001573605326405	FH	<section-header></section-header>
-2.4 -2.5 -2.5		a star-cluster or galaxy: one star-formation event of size (e.g.) 10 ⁷ Mo aLIGO/Virgo detectors observe GWs from the whole Universe

	initial distributions initial distributions
Cosmic	SFH Important piece of math: Convolution of two functions $(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau.$

Some more terms

- Lookback time:
 - difference between the age of the Universe *now* (at observation) and the age te of the Universe when the photons* were emitted (from the given object).
- Delay time:
 - the time it takes for a binary system to (1) evolve both stars, then (2) spiral in due to the emission of (undetectably weak) gravitational waves, and then (3) merge (emitting ((potentially)) detectable grav.waves). Typically: ~10 Myr – 13.77 Gyr

Even some more terms

• Chirp mass: $\mathcal{M} = rac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$

this is what can be directly derived from a measured GW-signal

to derive m₁ and m₂, a strong signal with good resolution is needed

Even some more terms

• Chirp mass: $\mathcal{M} = rac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

this is what can be directly derived from a measured GW-signal

to derive m₁ and m₂, a strong signal with good resolution is needed

• Interferometer:

Even some more terms

• Chirp mass: $\mathcal{M} = rac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$

this is what can be directly derived from a measured GW-signal

to derive m₁ and m₂, a strong signal with good resolution is needed

• Interferometer:

Interference

(of the *light* from the laser, not the GW signal!!)

n be directly measured GW-signal ld m₂, a strong signal lution is needed

^① Mirror moves

② Phase shifts

④ Bright light

And some names you MUST know

- LIGO:
 - Laser Interferometer Gravitational-wave Observatory (USA)
- aLIGO
 - advanced LIGO
 - the current version
- Virgo
 - LIGO's important little sister in Europe

Detector sensibility

Cosmic grav.wave background

• Heard about the cosmic <u>microwave</u> background?

Cosmic grav.wave background

- Heard about the cosmic <u>microwave</u> background?
- GW-background:
 - undetected (yet)

Cosmic grav.wave background

- Heard about the cosmic <u>microwave</u> background?
- GW-background:
 - undetected (yet)
 - cosmological sources
 - processes during e.g. the cosmic inflation
 (10⁻³⁶-10⁻³³ sec after the Big Bang)
 - astrophysical sources
 - large number of *unresolvable* BH-BH (or BH-NS, or NS-NS) mergers; additional WD-WD mergers, supernova explosions...

Galactic Binaries including future type la supernovae Compact Objects Orbiting Massive Black Holes high-precision probes of strong-field gravity

Merging Massive Black Holes in merged galaxies Fluctuations from Early Universe stochastic backgrounds and bursts

Credit: NASA/ESA

The whispering of the Universe

https://www.youtube.com/watch?v=2PzbYK1x3Vo

