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Previously 
on GW-progenitors...



  

Stars evolve
 stellar evolution→

massive: > 8 M☉

low-mass: < 8 M☉



  

How to do it more scientifically?

 The HRD 
 Hertzsprung–Russell diagram 



  
 The HRD 
 Hertzsprung–Russell diagram 

Credit: https://jila.colorado.edu/~ajsh/courses/astr1200_18/starevol.html



  

Further advantages of the HRD

● allows comparison 
of an observed star 
and its 
corresponding 
stellar 
evolutionary 
model

● allows comparison 
of low-mass stars 
vs. massive stars



  



  

Advantages of the HRD

● radius can be easily 
read out 
– equiradial lines due to 

Stephan-Bolzmann law
● color of the star can be 

easily read out 
(~surface temp.)

● brightness: ~luminosity



  



  



  

Where to start:

https://docs.mesastar.org/
en/latest/index.html

https://cococubed.com/me
sa_market/education.html

https://docs.mesastar.org/en/latest/index.html
https://docs.mesastar.org/en/latest/index.html
https://cococubed.com/mesa_market/education.html
https://cococubed.com/mesa_market/education.html


  

Where can we find stars*
*gas/galaxies/anything: “environments”

with sub-Solar Z?
 Globular clusters 

 Dwarf galaxies 

 Early Universe 



  

The winds of massive stars are… 
strong.

10–7 – 10–3 M☉/yr
→

loss of 10-70% of 
material over 

lifetime...

(Sun: ~10–14 M☉/yr)

Wolf-Rayet star WR 124 with its surrounding nebula known as M1-67.
The nebula came from the star!



  

To form a 60 M☉ black hole… 

● start with a very-very 
massive star*

or

● decrease the strength 
of the wind somehow?

*later
(IMF, mass limits…)



  

The Initial Mass Function (IMF)

● #stars: Φ(m) ~ m–2.35

● math:

Φ(m)dm = C*m–2.35dm
C: determined from the size of the 

population



  

Lifetime of stars
● (m) ~ mτ –2.5

– Sun’s lifetime: ~10*109 
yrs

– an 8 M☉ star’s lifetime: 
~ 5*107 yrs

– a 100 M☉ star’s 
lifetime: ~ 2*106 yrs

Credit: ase.tufts.edu/cosmos

Stars of higher mass are 
more luminous. They
burn their fuel at a 
faster rate. 

 → shorter lifetimes



  



  

● Stellar spectra
– absorption lines 

(mostly)

● Nebular spectra
– emission lines (a light source 

needed for the excitation)



  



  



  

Planck law

here: as a function of frequency
(works with wavelength as well)

Note: there is a T value in it!Note: there is a T value in it!



  

Moral of the story:

Stars are perfect Black Bodies. 

(Most of the time, more or less; but basically they are.)

Their Teff in the HRD is the Teff from the Planck law.



  

Side-notes on Wolf-Rayet stars

● Observationally:
– broad emission lines in the spectrum
– meaning there is a nebula around the star
– composition: (usually) H-free

● Theoretically:
– a H-free star with a nebula around it can be produced 

by:
● strong wind (single & binary stars) when the mass 

is very high (> 40 M☉, but highly Z-dependent!) 
● binary interaction (needs a close-enough companion 

& a so-called non-conservative mass transfer, etc.)



  

Side-notes on Wolf-Rayet stars

● Observationally:
– broad emission lines in the spectrum
– meaning there is a nebula around the star
– composition: (usually) H-free

● Theoretically:

1867: Wolf & Rayet



  

WR
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Credit: Braithwaite & Spruit (2015)

Note: 
– burning is BLUE not green/purple

– green dashes = strong mixing
– burning shells!

Kippenhahn diagram



  

HRD vs. Kippenhahn

● surface T, L
– helps observational 

comparison

● interior structure
– e.g. pre-supernova 

structure, mixing… 



  

Some words about convection
and about heat transfer  in general

– convection arises wherever heat needs to be transported extra efficiently 
e.g. burning core of massive stars, envelope of (super)giants and low-mass stars…

– leads to strong mixing (cf. boiling soup)
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e.g. burning core of massive stars, envelope of (super)giants and low-mass stars…

– leads to strong mixing (cf. boiling soup)



  

Star-formation (of massive stars)

● under active research
● low-mass stars:

● massive stars?
– strong radiation may blow away the material
– hierarchical star formation?

Stellar evolution technically

starts where star-formation ends

(IRL: ?? ...under active research)



  

Onset of stellar evolution: ZAMS

● Zero-Age Main Sequence
– (core) composition: 

same as the molecular cloud

● hydrogen burning starts (in the core)
● hydrostatic & thermodynamic equilibrium

– no bipolar outflows etc.
– stellar structure equations hold*

Z☉ ~ 0.014 (<2%)

ZLMC ~ 0.004
ZSMC ~ 0.002
ZGCs ~ <0.005
ZPopIII = 0

*”pre-MS”: last phases of 
star-formation modelled 
using the structure equations



  

Longest phase of stellar evolution: MS

● Main Sequence

– core-hydrogen-burning phase 
● lasts for ~90% of the lifetime (longest of them all)

● core temperatures: ~40M K
● in massive stars: CNO cycle

– low-mass stars like the Sun: pp-chain
● 4 1H  → 4He + γ
● end of MS: Terminal-Age Main Sequence (TAMS)



  

Post-MS

● Includes:
– core-He-burning (& shell-H-burning)
– core-C-burning (& shell-He & shell-H-burning)
– core-O-burning (& shell-C, shell-He, shell-H…
– core-Ne-burning (& shell…
– core-Si-burning (& shell...

● onion-structure of massive stars

T
e
m
p
.

Note: the onion layers become
more and more complex

nearing the end of the lifetime

Pre-supernova structure



  

Core collapse

● Gravity takes over
– end of the long-term equilibrium
– fall-in: on the free-fall timescale

● …is there something to stop it?
– Well… it depends.
– Most of the time (“classical” case): a neutron star 

forms in the center (“proto-neutron-star”)

● a neutron star is: one giant nucleus. dense. stable.
● bounce-back, shock waves, emission of neutrinos and 

light = SUPERNOVA EXPLOSIONSUPERNOVA EXPLOSION

– technically: a core-collapse supernova (CCSN)



  

Core collapse

● Gravity takes over
– end of the long-term equilibrium
– fall-in: on the free-fall timescale

● …is there something to stop it?
– Well… it depends.
– Most of the time (“classical” case): a neutron star 

forms in the center (“proto-neutron-star”)

● a neutron star is: one giant nucleus. dense. stable.
● bounce-back, shock waves, emission of neutrinos and 

light = SUPERNOVA EXPLOSIONSUPERNOVA EXPLOSION

– technically: a core-collapse supernova (CCSN)

Credit:  Cowan & Thielemann (2004)

Credit: Foglizzo et al. (2015)



  

Fate of the proto-NS

● depends on the mass of the object
– Mini < ~20 M☉: NS
– > ~20 M☉: BH
– but… explosion physics is complicated (as is stellar evolution…)

● Tolman–Oppenheimer–Volkoff limit: 2.16 M☉ 
– maximum observed 

mass of a neutron star 
is 2.14 M☉ 
for PSR J0740+6620 
discovered in 2019

under active research

Not the Chandrasekhar 
limit!   ~1.4 M☉

(= limit between 
NSs and white dwarfs)



  

Supernova types
● There are many types… 
● Classified by observers (simple picture):

Progenitor:
a massive star with
a H-rich envelope

Progenitor:
a massive star without

a H-rich envelope

Low-mass stars
become WDs

without explosion.
Later on: WD explodes.



  

red-supergiant progenitor
 → type II

*stripping = loss of H-rich top layers
In the context of single stars:

’stripping’ is due to losing
mass in the strong wind

In the context of binary stars:
mass transfer

red-supergiant progenitor
 → type II

‘stripped’ progenitor*
(e.g. a Wolf-Rayet star)

 → type Ib or Ic

  Only true for: Only true for:    single stars    single stars 
  at solar metallicity at solar metallicity 

  no (or slow) rotation no (or slow) rotation 



  

What are compact objects?

● three main types:
– white dwarf
– neutron star
– black hole 

● WDs: electron degeneracy
– nuclei (He/O/C/Ne/Mg) are not in degenerate state

● NSs: neutron degeneracy too

degeneracy pressure  → stability against 
(self-)gravity

other (speculative) degenerate stars:
– quark star
– preon star
– boson star
– … (see e.g. Wikipedia)

degenerate 
stars

composition depends on mass
(i.e. stellar evolution of the
low-mass star in question)

stellar ‘corpses’
= remnants
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#stars: Φ(m) ~ m–2.35

Credit: Roen Kelly

sub-Solar masses:

– also white dwarfs 
(=compact object,
stellar remnant)

– however: 
brown dwarf stars

may live longer than
the Universe…

Sun  WD→
(eventually a black dwarf)

Massive stars:
NSs or BHs*

intermediate-mass stars
(~4–8 M☉):

WDs (MgNe) or NSs

Credit: Roen Kelly



  

THIS HAS BEEN:
single massive stars’ lives

at solar metallicity
(without rotation)

Our strategy: start with 
Massive Stars at Solar Z

 → sub-Solar metallicities?
   → fast-rotating stars? 

  → stars in a binary system? 



  

Sub-Solar metallicities

● Main effect: mass loss becomes WEAKER

 → stars live their lives with more mass retained

 → also end their lives with more mass retained

(and still no rotation and no binary companion)

 Consequence #1:  Consequence #2: 

direct fall-in into 
a black hole

(of mass ~20-40 M☉)
pair-instabiliy developing, leading to 

a PISN (or maybe a pPISN)
or again to direct fall-in to a BH 

(but this will be a very heavy BH with >150 M☉)
key question: is there something to STOP 
the collapse?      if yes: CCSN (type II, Ib/c)
if no: direct fall-in into a BH (no explosion)



  

Why?  Pair Instability 

Photon pressure 
drops due to
γγ  e- & e+→

Collapse

Explosive O-burning 
  supernova →

No remnant!

happens in quite massive stellar cores

can happen 
already in stars
with  60 M⪆ ☉ 

key question, as always:
is there something to stop it?
…if not:

happens with stars
~140-260 M☉ 

 pair-instability supernova (PISN) 

mass values quoted here mean MZAMS



  

Why?  Pair Instability 

Photon pressure 
drops due to
γγ  e- & e+→

Collapse

Explosive O-burning 
  supernova →

No remnant!

happens in quite massive stellar cores

can happen 
already in stars
with  60 M⪆ ☉ 

key question, as always:
is there something to stop it?
…if not:

happens with stars
~140-260 M☉ 

 pair-instability supernova (PISN) 

Note:
– iron-core stage is not even reached yet

– whole star explodes
– nucleosynthetic yield (ejected 

material’s composition) is
different from classical CCSNe

– have we ever observed such a SN?
…who knows

stars between 60–140 M☉:
collapse is

stopped by the star 
re-gaining its hyrostatic

stabilitymight* lead to a
‘pulsational pair-instability supernova’ (pPISN)

because layers lost in the pulsations 
might collide and emit light

above 260 M☉:
again direct collapse into BH

(gravity wins)

mass values quoted here mean MZAMS



  

The BHs of GW190521 shouldn’t exist...

BH no go zone

GW190521: 

m1 = 85 (+21/−14) 
Msun

m2 = 66 (+17/−18) 
Msun

under active research



  

What happens at

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?



  

Massive stars rotate… sometimes quite fast

Credit: Ramírez-Agudelo et al. (2013)

Data:
single O-stars 

in the LMC  

How do we know that?  line profile→

Credit: LumenLearning Astronomy

inclination?

v*sin(i)
(“projected rotational

velocity”)



  

Massive stars rotate… sometimes quite fast

Credit: Ramírez-Agudelo et al. (2013)

Data:
single O-stars 

in the LMC  

 especially at low Z! 



  

Rotation can effect the structure
● centrifugal force

– oblate shape
– extra mixing inside!

● extreme case: 
– “break-up” rotation
– Fcen  F≥ grav

– leads to extra mass loss
– mass dependent

e.g. “B[e] star” phenomenon

“critical rotation”
“Keplerian break-up

 frequency”

Credit: Jermyn+18

Theoretically considered:

● non-extreme case: mixing & mass loss



  

Rotational mixing

Credit: Oksala+16

take care:
Y-axis is
the radius!

Credit: Yoon’15

…but depends on Z too:
metallicity  mass loss;↔

mass loss  angular →
momentum loss



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram:

 ?? 

Credit: M. Cantiello

Type of final explosion?
type Ib/Ic (core collapse)

but ROTATING!!  a ‘collapsar’→

= Quasi-chemically homogeneous evolution

a hot, He-rich star

depending on wind properties,
might be a WR star (emission lines)

or something else? (absorbtion lines)



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar
● collapsar  accretion disc & jets→
● if the jet aligns with the line of sight: 

long-duration gamma-ray burst 
may be observed (L-GRB)
– accompanied by a SN Ib/Ic

● if not aligned: SN Ib/Ic

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.

Synchrotron radiation
accelerated in the jet.

-rays emitted.γ



  

What are GRBs?

– during the cold war…

– today: satellite missions
e.g.:
Fermi Gamma-ray Space Telescope
Neil Gehrels Swift Observatory etc.

– daily observations

– majority of the energy is
measured in -raysγ

– there is a so-called
”afterglow” observed at
softer wavelength 
(X-ray, optical, IR, radio…)
after the prompt -emissionγ

Observationally...



  

2 
se

c

a “collapsar”

 binarity! 

GWs! 

What are GRBs?



  

 → sub-Solar metallicities?
   → fast-rotating stars? 

→  stars in a binary system?     

Our strategy:

start with 
Massive Stars at Solar Z



  

The most important concept: 
Roche-lobe

Credit: Bonneau+15Credit: D.Darling

 in 3D: Lagrangian points: 
where the gravitational 

forces of the two 
bodies and the centrifugal 

force balance 
each other



  

Imagine two (massive) stars!
One (massive) star alone:

Two of them next to each other:

(Super-)

(Super-)

● (m) ~ mτ –2.5

– Sun’s lifetime: ~10*109 yrs
– an 8 M☉ star’s lifetime: ~ 5*107 yrs
– a 100 M☉ star’s lifetime: ~ 2*106 yrs

 Main-Sequence (MS) 

 Supergiant 

Credit: Mapelli’21

with Solar Z, no rotation



  

Why does the Roche-lobe matter?

● Mass transfer.
● Some important terms:

– primary/secondary (companions)

– donor/accretor
– M1/M2

– detached system
– Roche-lobe overflow
– semi-detached, contact system
– ‘common envelope’ (…)

stellar envelope

mass gainer
losing mass / 
gaining mass



  

Some more terms

● orbital separation = orb. distance
● period = orbital period

●  ≠ rotational period!! 
(though cf. synchronization)

● initial orbital separation vs. actual
● initial period vs. actual
● Connection between distance & period?

e.g. due to tidal forces

Kepler’s 3rd law:



  

‘Case A’, ‘Case B’, ‘Case C’ mass transfer

● Historical categorization (cf. stellar classes O, B, A, F… or 

supernova classification type Ia, Ib, II…) – useful to know

– case A: MS
– case B: HG
– case C: He-b.

even if its getting outdated

MS = Main Sequence
HG = Hertzsprung-gap
He-b. = helium-burning

(donor’s
evolutionary
status)



  

Orbital evolution during mass transfer

● suppose conservative mass transfer:
– orbit shrinks if Mdonor > Macc 
– orbit expands if Mdonor < Macc 

● if the mass transfer is non-conservative:
– then we also need to take into account how much 

angular momentum is lost from the system…
● Roche-lobe is effected: 
● And remember: 

massive stars have 
WINDS… 

cf. prof. Onno Pols’ 
lecture notes on binaries

[LINK]

and winds carry away ang.mom. too

https://www.astro.ru.nl/~onnop/education/binaries_utrecht_notes/Binaries_ch6-8.pdf


  

What happens to the donor after 
losing layers?

● Can the donor regain its stability after RLOF?
– if yes: stable mass transfer – or detachement
– if no: unstable mass transfer (      )

● Stable mass transfer:
– donor remains in thermal equilibrium while continuing mass 

transfer driven by stellar evolution related expansion (or by 
orbital shrinkage due to ang. mom. loss)

– donor does not remain in thermal eq. but the 
mass transfer may still be stable, driven 
(self-regulatingly) by thermal readjustment of the donor

hardcore 

stuff

(depending also on RL-evolution)

 τnuc  ≫ τKH  ≫ τdyn 



  

What happens to the donor after 
losing layers?

● Can the donor regain its stability after RLOF?
– if yes: stable mass transfer – or detachement
– if no: unstable mass transfer

● Stable mass transfer:
– donor remains in thermal equilibrium while continuing mass 

transfer driven by stellar evolution related expansion (or by 
orbital shrinkage due to ang. mom. loss)

– donor does not remain in thermal eq. but the 
mass transfer may still be stable, driven 
(self-regulatingly) by thermal readjustment of the donor

hardcore 

stuff

(depending also on RL-evolution)

Detailed calculations show that stars with 
radiative envelopes shrink rapidly (τdyn) in 

response to mass loss, while stars
with convective envelopes tend to 

expand or keep a roughly constant radius (τKH).  τnuc  ≫ τKH  ≫ τdyn 



  

Unstable mass-transfer

● if the donor is expanding too quickly (τdyn) and 
thus cannot stay within its Roche lobe: ever-
increasing mass-transfer rates

● this is an unstable, runaway situation
● has dramatic effects: “common envelope” situation

 τnuc  ≫ τKH  ≫ τdyn 

secondary cannot 
accrete fast enough



  

Unstable mass-transfer

● if the donor is expanding too quickly (τdyn) and 
thus cannot stay within its Roche lobe: ever-
increasing mass-transfer rates

● this is an unstable, runaway situation
● has dramatic effects: “common envelope” situation

 τnuc  ≫ τKH  ≫ τdyn 

Credit: Mapelli’21

Credit: Wikipedia

Credit: Siess+18

Credit: A. Potter (astrobites)

Credit: Yours Truly ;) [Vigna-Gomez+18]



  

What we know about CE

● short lived phase
– observed?? how??

● but it probably occurs
– explaining close white dwarf-binaries 

(WD=ex-Red Giant: no other way to get that close)
● 3D simulations are still very expensive

– in practice: derived relations between 
orbital energy & binding energy of the envelope

● Result: envelope is (probably?) ejected due to 
friction. (If not: merger. No GW possible.)

 Movies :) 
Passy+12:

0.88 M☉ (RG) 
+ 0.15 M☉  
companion

Moreno+21:
10 M☉ (RSG) + 

BH 
companion

of the two stellar cores



  

What we know about CE

● short lived phase
– observed?? how??

● but it probably occurs
– explaining close white dwarf-binaries 

(WD=ex-Red Giant: no other way to get that close)
● 3D simulations are still very expensive

– in practice: derived relations between 
orbital energy & binding energy of the envelope

● Result: envelope is (probably?) ejected due to 
friction. (If not: merger. No GW possible.)

 Movies :) 
Passy+12:

0.88 M☉ (RG) 
+ 0.15 M☉  
companion

Moreno+21:
10 M☉ (RSG) + 

BH 
companion

of the two stellar cores

Leads to the ‘hardening’ 
(=shrinking) of the orbit.

Credit: MPIA

(If the system survives, and not merge.)



  

Let’s play!

Credit: Kruckow+18

Roche-lobe overflow:
stable mass transfer

Wolf-Rayet star
(naked He-star with

strong emission lines)

Zero-age Main Seq.

Supernova may kick out
the companion! Survival

rate?

Accreting black hole:
High-Mass X-ray Binary

(observed: periodic
pulsations in X-rays)

Common Envelope!

Probably a HMXB?

Stripped = type Ib
Ultra-stripped = type Ic

(Pulsar: a rotating,
magnetized neutron star)

 GRAV. WAVES!!! 



  

Possible exam question ;)
● explain a binary evolution cartoon scientifically!



  

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

What about a metal-poor,
fast rotating binary system?

single



  

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

What about a metal-poor,
fast rotating binary system?

Let’s put two 
of them next
to each other

on a (very) close
orbit!

+ = ?



  

What do chem.hom. evolving stars look like?

Chemically-homoge-
nesously evolving star:

single stars



  



  



  

To “cartoonize”
the scenario:

Credit: Marchant+16

initial masses
70 M☉ + 56 M☉

(example)

mass ratio (q)
equalizes

a very
 sh

ort 
orb.perio

d!

here is another SN
+(potential) L-GRB

long-duration-

system is still close enough that spiral-in
can happen within the Hubble-time

(seeing the L-GRB depends
on the inclination angle)

Remember: to see a GRB,
we need to look right into

the jet!



  

HMXB = High-mass X-ray binary                  

● sister object: LMXB = Low-mass X-ray binary

● X-rays are produced by the matter falling from 
the (stellar) companion to the NS or BH

– if the companion is a low-mass star (or a WD): LMXB
– if it’s a massive star: HMXB

● Massive stars have strong winds! It contributes.

Observed:
~ 200 LMXB in the MW
some more in other gals.

> 100 HMXB in MW
e.g. Cygnus X-1

Credit: Palit 2020

periodic
X-ray pulses



  

Microquasars
● basically HMXBs which also emit in radio 

– the source of the radio emission is two jets* (*see next slide)

– Cygnus-X1 is also a microquasar

● name comes from ‘quasars’
● galaxies where the central BH eats up the stars…
●   → active galactic nucleus (AGN)
● powered by a supermassive BH ( 10≳ 6–109 M☉) 

(as opposed to a stellar mass BH as in a HMXB/microquasar)

● THIS WEEK’S MOST EXCITING NEWS!!
Capturing our MW’s central BH by the 
”Event Horizon Telescope” (not a real telescope;
but a collaboration of radio observatories & clevera data reduction techniques :D )

also known as ‘quasi-stellar object” (QSO)
– discovered in the 50s as radio sources of 
unknown origin

Sgr A*
4x106 M☉

not a very 
active 
nucleus
(fortunately)



  

Jets (in astronomy)

Credit: Timmerman/LOFAR

Credit: Sweijen/LOFAR

Actual observation (2021, LOFAR):

Artistic image of the same stuff:

 AGNs  GRBs 

??

Artistic image:

spectral features (breaking)
high energies cannot be explained otherwise

(timescales
are proportional

to the mass
of the central BH)

long-living

short-living

And also 
microquasars, 

of course.



  

From individual systems
to

populations



  

Age, Mass, Radius, Teff [K], log(L/L☉), Massloss rate…

HR-diagram



  

IMPORTANT

● Stellar evolution 
modelling
– based on first 

principles 
(5 stellar equations)

– follows one star’s life 
at the time

– IMF is not yet 
considered

– result is a line (‘track’) 
in the HR-diagram

● Synthetic population 
modelling
– relies on stellar 

evolution modelling
– does not simulate the 

individual star’s life 
(typically)

– IMF is taken into 
account

– result is a statistically 
meaningful prediction 
about a population

Exam 
warning! 

:P



  

● 2 stars instead of 1
– both have their individual IMFs

● orbital separation!
– Initial Orbital Period Distribution

same kind of thing as the IMF but for the period,
i.e. an observation-based statistical distribution

● plus a lot of assumptions about the evolution
– mass transfer (stable/unstable? conservative/non-conservative? ...)

– Common Envelope phase (outcome: merger or survival? 
separation afterwards?)

– supernova physics… and the kick.

 IMF  IMF 

(related?)

 IOPD 

Population synthesis on binaries

on top of what we 
already don’t know
about single stars’

evolution

 under active research 



  

Star-formation history

● We need to know the 
history of how the stars 
are being born… 

 IMF  IMF 

 IOPD Not enough!
or anything else

SFR

SFRst
ar

-f
or

m
at

io
n 

ra
te

Unit:
M☉/yr

 We need all these to do 
 (binary) population synthesis. 



  

From star-formation history to
cosmic  star-formation history

● This is what we need to predict GW-event rates 
from synthetic populations

≪≪≪

Credit: ICRAR/UWA



  

From star-formation history to
cosmic  star-formation history

● This is what we need to predict GW-event rates 
from synthetic populations

Peaking: somewhere 
around z = 2, when 

the Universe was ~3.5 Gyr old

Note:
massive stars live 

short lives! 
2-20 Myr  13 Gyr≪

Credit: Madau & Dickinson (2014)



  

Now we can answer the original 
question of this whole lecture series

 IMF  IMF 
 IOPD 

stellar models

initial distributions

cosmic SFH

+ a lot of assumptions about binary physics

(kind of)



  

Now we can answer the original 
question of this whole lecture series

 IMF  IMF 
 IOPD 

stellar models

initial distributions

cosmic SFH

+ a lot of assumptions about binary physics

Important piece of math:
Convolution

of two functions

(kind of)



  

And some names you MUST know

● LIGO: 
– Laser Interferometer 

Gravitational-wave 
Observatory

● aLIGO
– advanced LIGO
– the current version

● Virgo
– LIGO’s important little 

sister in Europe

Credit: C. Zuo (2020)

(USA)



  



  



  



  



  



  



  



  

Detector sensibility
Credit: C. Berry

GO AND CHECK OUT
OTHER SOURCES

AND DETECTORS!!
http://gwplotter.com/

Laser Interferometer Space 
Antenna (~2037)

Einstein Telescope
(>2030)

Square Kilometre Array
(late 2020’s)

not actual stars but
 ≈ 106 M☉ BH mergers

=WD in
spira

ls

first direct observation

 ≈ 109 M☉ 

 ≈ 109 M☉ but 
unresolvable

the stuff we
talked about
the most, i.e:
BHs & NSs

“gravitational wave spectrum”
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Cosmic grav.wave background

● Heard about the cosmic microwave background?
● GW-background:

– undetected (yet)
– cosmological sources

● processes during e.g. the 
cosmic inflation
(10−36–10−33 sec after the Big Bang)

– astrophysical sources
● large number of unresolvable BH-BH (or BH-NS, or NS-NS) 

mergers; additional WD-WD mergers, supernova 
explosions… 



  

The whispering of the Universe

https://www.youtube.com/watch?v=2PzbYK1x3Vo

‘GW150914’

35 M☉ & 30 M☉

(BH+BH)

=

64 M☉

3 M☉ converted 
into GWs!

https://www.youtube.com/watch?v=2PzbYK1x3Vo
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