Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #2

NCU, Summer Semester 2022

Previously on GW-progenitors...

Credit: Miller & Yunes (2019, Nature 568, 469–476)

Credit: ESO/M. Kornmesser

Massive stars vs. low-mass stars

Reason: stars evolve → stellar evolution

Hertzsprung-Russell Diagram

of the HRD

radius can be easily read out - equiradial lines due to Stephan-Bolzmann law color of the star can be easily read out (~surface temp.) brightness: ~luminosity

Further advantages of the HRD

- allows comparison of an observed star
 and its
 corresponding
 stellar
 evolutionary
 model
- allows comparison of low-mass stars vs. massive stars

The real (boring) scientific version:

Credit: Roberta Humphreys & al. (2017, ApJ. 844.)

- X: lgT_{eff} [K]
 - logarithmic & upside down (historical reasons)

• Y:
$$lg(L/L_{\odot})$$

- lines: theoretical models (not always, but usually)
- dots: observed stars (not always, but usually)
- ZAMS: Zero-Age Main Sequence

Theoretical modelling of the stellar structure

composition change due to nuclear burning:

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right) \quad (5)$$

MESA Summer School 2022: August 8th-12th (University of California, Santa Barbara)

https://mesahub.github.io/summ er-school-2022/application/

Where to start:

https://docs.mesastar.org/ en/latest/index.html

https://cococubed.com/me sa_market/education.html

How to install

One Black Hole* *Neutron Star doesn't make a GW emission though...

Metallicity

Astronomers and metal

Astronomers and metal

Astronomers and metal

"Z: metallicity"

The Sun's composition

Less than 2% heavy elements, i.e. *high* metal content, metal-*rich*

How to measure composition?

How to measure composition?

Spectroscopy :)

- Stellar spectra
 - absorption lines (mostly)

- Nebular spectra
 - emission lines (a light source needed for the excitation)

Where can we find stars* *gas/galaxies/anything: "environments" with sub-Solar Z?

OBSERVABLE UNIVERSE

Where can we find stars* *gas/galaxies/anything: "environments" with sub-Solar Z?

Where can we find stars* *gas/galaxies/anything: "*environments*" with sub-Solar Z?

Globular clusters

Early Universe

LOCAL GALACTIC GROUP

LOCAL SUPERCLUSTERS

OBSERVABLE UNIVERSE

Early Universe...

Looking into the past...

Dwarf galaxies...

Globular Clusters

Globular Clusters

Globular Clusters

• Well...

• Well...

AFTER THE COFFEE BREAK :D

Suggested literature

Gravitational Waves Vol. 1 (2007) & Vol. 2 (2018) – by **Michele Maggiore**

Rudolf Kippenhahn Alfred Weigert Achim Weiss

Stellar Structure and Evolution

Second Edition

Stellar Structure and Evolution 2nd Edition (2012) – by **Kippenhahn, Weigert & Weiss**

Suggested literature (free)

○ A https://iopscience.iop.org/article/10.1088/1742-6596/1263/1/012008 E

IOPscience Q Journals -Books Publishing Support Q Login -

Journal of Physics: Conference Series

Citation Alex Nielsen 2019 J. Phys.: Conf. Ser. 1263 012008

PAPER · OPEN ACCESS Lecture Notes on Gravitational Waves Alex Nielsen¹ Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 1263, ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers 12-21 July 2018, Bol'shie Koty, Russian Federation

Turn on MathJax Share this article 🗹 f 🈏 M

Abstract

References

1489 Total downloads

Lecture Notes on Gravitational Waves (2019) - by Alex Nielsen (J. Phys.: Conf. Ser. 1263 012008)

🔀 Article PDF

References •

Article information

Abstract

These lectures notes give a overview of gravitational wave astrophysics and the role they play in particle astrophysics and multi-messenger astronomy. The lecture notes are organised into three main topics: the theoretical background of gravitational waves in general relativity, how gravitational waves

Merging stellar-mass binary black holes (2022) - by I. Mandel & A. Farmer (arXiv:1806.05820, *Physics Reports, in press*)

Search. All fields **arxiv** > astro-ph > arXiv:1806.05820 Help | Advanced Search Astrophysics > High Energy Astrophysical Phenomena [Submitted on 15 Jun 2018 (v1), last revised 19 Jan 2022 (this version, v3)] • PDF Merging stellar-mass binary black holes (license) Ilva Mandel, Alison Farmer The LIGO and Virgo detectors have directly observed gravitational waves from mergers of pairs of stellar-mass black holes, along with a smaller number of mergers involving neutron stars. These observations raise the hope that compact object mergers could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics.

This colloquium-style article summarises the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some prospects for gravitational-wave astronomy

Comments: Version accepted by Physics Reports

Download:

~ Search

Other formats

Current browse context:

astro-ph.HE < prev | next > new | recent | 1806 Change to browse by: astro-ph astro-ph.SR gr-qc

References & Citations INSPIRE HEP

Exam & grading

Oral examination.

Assessment criteria:

- fail: below 50 pts (below 50%)
- satisfactory: 50 pts (50%)
- satisfactory plus: 60 pts (60%)
- good: 70 pts (70%)
- good plus: 75 pts (75%)
- very good: 80 pts (80%)

Extra options...

- active participation*: +20%
- paper presentation**: +40%

*asking questions during class, thinking out loud, showing interest

**chosing a GW-related paper from arXiv/ADS (accepted for publication after 24.01.2022) and giving a "journal club" style presentation (with slides) of ~30 min

Exam & grading

Oral examination.

Assessment criteria:

- fail: below 50 pts (below 50%)
- satisfactory: 50 pts (50%)
- satisfactory plus: 60 pts (60%)
- good: 70 pts (70%)
- good plus: 75 pts (75%)
- very good: 80 pts (80%)

Extra options...

- active participation*: +20%
- paper presentation**: +40%

*asking questions during class, thinking out loud, showing interest

**chosing a GW-related paper from arXiv/ADS (accepted for publication after 24.01.2022) and giving a "journal club" style presentation (with slides) of ~30 min

Where to find the relevant papers?

• NASA ADS: https://ui.adsabs.harvard.edu/

$\leftarrow \rightarrow$ C \textcircled{a}	〇 各 https://ui.adsabs. harvard.edu	133% ★	ତ 🛃 📼 🕫 💁 💁 🗳 🗛 =
ja) ads		🗩 Feedback 🗸 🝺 ORCID -	About - Sign Up Log In
astrophysics data system			
	Classic Form Modern For	m Paper Form	
	QUICK FIELD: Author First Author Abstract All Se	earch Terms 🔹	X Q

• arXiv: https://arxiv.org/ (preprints...)

Where can we find stars* *gas/galaxies/anything: "environments" with sub-Solar Z?

Globular clusters

Dwarf galaxies

LOCAL GALACTIC GROUP

Early Universe

• Stellar evolution! (what else... :P)

Credit: MSFC/NASA

- Stellar evolution! (what else... :P)
 - more precizely: *stellar winds*

Credit: MSFC/NASA

- Stellar evolution! (what else... :P)
 - more precizely: *stellar winds*

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun. *#northernlights*

> low-mass: < 8 M_☉ massive: > 8 M_☉

The winds of *massive* stars are... strong.

 $10^{-7} - 10^{-3} M_{\odot}/yr$ \rightarrow loss of 10-70% of material over lifetime...

 $(Sun: ~10^{-14} M_{\odot}/yr)$

Wolf-Rayet star WR 124 with its surrounding nebula known as M1-67. The nebula came *from the star*!

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

To form a 60 M_{\odot} black hole...

0ľ

 decrease the strength of the wind somehow?

Credit: Kudritzki & Puls (2000)

Massive stars:

line-driven (i.e. radiation-driven) winds

Cause they are bright, cf.:

Credit: Kudritzki & Puls (2000)

Credit: Kudritzki & Puls (2000)

Credit: Kudritzki & Puls (2000)

To explain the mass distribution of GW-emitting compact object mergers, we need to understand low-Z environments! (And low-Z stellar evolution, of course.)

Globular clusters

Early Universe

