Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #3

NCU, Summer Semester 2022

Previously on GW-progenitors...

Astronomers and metal

"Z: metallicity"

How to measure composition?

Spectroscopy :)

Where can we find stars* *gas/galaxies/anything: "environments" with sub-Solar Z?

Globular clusters

Dwarf galaxies

LOCAL GALACTIC GROUP

Early Universe

Globular Clusters

How does Z come to GWs though?

- Stellar evolution! (what else... :P)
 - more precizely: *stellar winds*

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun. *#northernlights*

> low-mass: $< 8 M_{\odot}$ massive: $> 8 M_{\odot}$

The winds of *massive* stars are... strong.

 $10^{-7} - 10^{-3} M_{\odot}/yr$ \rightarrow loss of 10-70% of
material over
lifetime...

 $(Sun: ~10^{-14} M_{\odot}/yr)$

Wolf-Rayet star WR 124 with its surrounding nebula known as M1-67. The nebula came *from the star*!

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

To form a 60 M_{\odot} black hole...

0ľ

 decrease the strength of the wind somehow?

What drives the wind?

To explain the mass distribution of GW-emitting compact object mergers, we need to understand low-Z environments! (And low-Z stellar evolution, of course.)

to research...

Globular clusters

Early Universe

To form a 60 M_{\odot} black hole...

 start with a very-very massive star*
 *later (IMF, mass limits...)

01

 decrease the strength of the wind somehow?

(Stellar) Populations

... and the Initial Mass Function (IMF)

a star-cluster or galaxy:

(e.g.) $10^7 M_{\odot}$

(e.g.) $10^7 M_{\odot}$

How many GW events will happen in it (per year)?

a star-cluster or galaxy:

(e.g.) $10^7 M_{\odot}$

How many GW events will happen in it (per year)?

a star-cluster or galaxy: (e.g.) $10^7 M_{\odot}$

How many GW events will happen in it (per year)?

stellar population

stars

a star-cluster or galaxy: (e.g.) 10⁷ M⊙

How many GW events will happen in it (per year)?

stellar population

a star-cluster or galaxy: (e.g.) $10^7 M_{\odot}$

How many stars with 8 M_o?

stars

How many with 20 M_{\odot} ? How many with 100 M_{\odot} ?

Homework

$\Phi(m) \sim m^{-2.35}$ *math:* $\Phi(m)dm = C^*m^{-2.35}dm$ C: determined from the size of the population (e.g. 10⁷ stars)

definite integral: <u>how many stars are between e.g. 10-20 M</u>_☉

Compute the number (and mass) of stars between 10-20 M_☉ in a stellar population of 10⁷ stars!

Suppose that in this star-cluster the lower mass limit is $1 M_{\odot}$ and the upper mass limit is $120 M_{\odot}$.

Homework

What changed since the '50s?

• Salpeter, Kroupa, topheavy...

> top-heavy: $\Phi(m) \sim m^{-\alpha}$

- $\alpha = 1.9$ (?)
- helps with massive stars ;)

...and massive BHs too!

• What is the most massive star known?

Highest mass star in the Universe?

- Westerhout 49-2:
 - 250 (±120) M_{\odot}
 - W49: star-forming region in the Milky Way...
- low Z ??
 - mass loss is weaker...
 - hard to observe individual objects
 - Population III stars [next slide]
- Practice:
 - IMF with M_{up} = 120 M_☉
 (or 250 M_☉ or 500 M_☉ or ...)

UKIDSS JHK image of W49

• Historically: 3 stellar "populations"

Population I = stars around the Sun (solar Z)
Population II = stars in Globular Clusters (low Z)
Population III = primordial stars, metal-free (H&He)

• Historically: 3 stellar "populations"

Population I = stars around the Sun (solar Z) Population II = stars in Globular Clusters (low Z) Population III = primordial stars, metal-free (H&He)

- Historically: 3 stellar "populations"
 - Population I = stars around the Sun (solar Z)
 - Population II = stars in Globular Clusters (low Z)
 - Population III = primordial stars, metal-free (H&He)
 - "massive population II stars":
 - low-metallicity massive stars / metal-poor massive stars
 - e.g. in dwarf galaxies or the early Universe

• Historically: 3 stellar "populations"

Population I = stars around the Sun (solar Z)

- Population II = stars in Globular Clusters (low Z)-
- Population III = primordial stars, metal-free (H&He)
- "massive population II stars":
 - low-metallicity massive stars / metal-poor massive stars
 - e.g. in dwarf galaxies or the early Universe
- 'Stellar Population' today:
 - stars in a star-cluster or galaxy

HARDCORE STUFF

How many GW events happen
IN THE UNIVERSE (per year)?

a star-cluster or galaxy: one star-formation event of size (e.g.) 107 Mo

aLIGO/Virgo detectors observe GWs from the whole Universe...

Population synthesis

- Synthetic population:
 - time-dependence
 - star-formation history...

stars / stellar models

stellar population

Population synthesis

- Synthetic population:
 - time-dependence
 - IMF
 - star-formation history...

Question:

Which star lives longer?

A low-mass star or a massive star?

Lifetime of stars

- $\tau(m) \sim m^{-2.5}$
 - Sun's lifetime: ~10*10⁹
 yrs
 - an 8 M_☉ star's lifetime:
 ~ 5*10⁷ yrs
 - a 100 M_☉ star's lifetime: ~ 2*10⁶ yrs

Stars of higher mass are more luminous. They burn their fuel at a faster rate.

→ shorter lifetimes

Credit: ase.tufts.edu/cosmos

 \diamondsuit

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

- τ(m) ~ m^{-2.5}
 - Sun's lifetime: ~10*10⁹ yrs
 - an 8 M_☉ star's lifetime: ~ 5*10⁷ yrs
 - a 100 M_☉ star's lifetime: ~ 2*10⁶ yrs

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

- $\tau(m) \sim m^{-2.5}$
 - Sun's lifetime: ~10*10⁹ yrs
 - an 8 M_☉ star's lifetime: ~ 5*10⁷ yrs
 - a 100 M_☉ star's lifetime: ~ 2*10⁶ yrs

A star-cluster of 10⁵ yrs (young) will look really different from a star-cluster of 10⁸ yrs (old).

 $\stackrel{\frown}{\simeq}$

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

Dwarf galaxies

- a 100 M_☉ star's lifetime: ~ 2*10⁶ yrs

- an 8 M_☉ star's lifetime: ~ 5*10⁷ yrs

- Sun's lifetime: ~10*10⁹ yrs

τ(m) ~ m^{-2.5}

A star-cluster of 10⁵ yrs (young) will look really different from a star-cluster of 10⁸ yrs (old).

Globular clusters

VS.

- $\tau(m) \sim m^{-2.5}$
 - Sun's lifetime: ~10*10⁹ yrs
 - an 8 M_☉ star's lifetime: ~ 5*10⁷ yrs
 - a 100 M_☉ star's lifetime: ~ 2*10⁶ yrs

VS.

Important exam question :D

 What is the difference between stellar evolution and population synthesis?

