Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #6

NCU, Summer Semester 2022

Previously on GW-progenitors...

A0 .	A5	FO	F5	G0	G5	КО		K5	M	0 🥚	M5		0.0000001
10,000			7,000	6,000		5,000		4,000	3,5	00	2,500		
							. •						

Å

Planck law

$$B(\mathbf{\nu}, \mathbf{T_{eff}}) = \frac{2h}{c^2} \frac{\mathbf{\nu}^3}{e^{\frac{h\mathbf{\nu}}{k_B T_{eff}}} - 1}$$
(3)

here: as a function of frequency (works with wavelength as well)

Note: there is a T value in it!

Radiation field of stars with different T_{eff}

Core collapse

- Gravity takes over
 - end of the long-term equilibrium
 - fall-in: on the free-fall timescale
- ... is there something to stop it?
 - Well... it depends.
 - Most of the time ("classical" case): a neutron star forms in the center ("proto-neutron-star")
 - a neutron star is: one giant nucleus. dense. stable.
 - bounce-back, shock waves, emission of neutrinos and light = SUPERNOVA EXPLOSION

forms in the center ("proto-neutro

- a neutron star is: one giant nucle
- bounce-back, shock waves, emise light = SUPERNOVA EXPLOSI

- technically: a core-collapse sur Credit: Foglizzo et al. (2015)

Results of a CCSN

- supernova lightcurve
 - photons: emitted in the shock
 - observed at many wavelenths
 spectrum
 - decay phase: ⁵⁶Co → ⁵⁶Fe
- explosive nuclear burning: r-process (**r**apid)
 - lots of free neutrons: rapid neutron-capture
 - elements heavier than iron
- remnant: NS... or BH

credit: Bose, Kumar et al. (2015)

Fate of the proto-NS

- depends on the mass of the object under active research
 - $M_{ini} < ~20 M_{\odot}: NS$
 - $> ~20 M_{\odot}: BH$

Not the Chandrasekhar *limit!* ~1.4 M_{\odot} (= limit between NSs and white dwarfs)

- but... explosion physics is complicate (as is stellar evolution...)
- Tolman–Oppenheimer–Volkoff limit: 2.16 M⊙
 - maximum observed mass of a neutron star is 2.14 M_☉ for PSR J0740+6620 discovered in 2019

Full supernova taxonomy as of 2022?

Need to consider additionally (at the very least):

- rotation (leading to e.g. Gamma-ray bursts or Superluminous SNe)
- pair-creation mechanism (leading to Pair Instability Supernovae, PISNe)
- binarity (leading to, basically, anything we want :P but also to GWs ;))

CORPSES.

And also: some more explosions ;)

- three main types:
 - white dwarf
 - neutron star
 - black hole

degenerate stars

e – preon star – boson star

– quark star

– ... (see e.g. Wikipedia)

other (speculative) degenerate stars:

– quark star

preon starboson star

- ... (see e.g. Wikipedia)

other (speculative) degenerate stars:

- three main types:
 - white dwarf **degenerate**
 - neutron star
 - black hole
- WDs: electron degeneracy
 - nuclei (He/O/C/Ne/Mg) are not in degenerate state

stars

NSs: neutron degeneracy too

- three main types:
 - white dwarf **degenerate**
 - neutron star
 - black hole

- other (speculative) degenerate stars:
- quark star
- preon star
- boson star
- ... (see e.g. Wikipedia)

composition depends on mass (i.e. stellar evolution of the low-mass star in question)

- WDs: electron degeneracy
 - nuclei (He/O/C/Ne/Mg) are not in degenerate state

stars

NSs: neutron degeneracy too

- three main types:
 - white dwarf
 - neutron star
 - black hole
- degenerate stars
- other (speculative) degenerate stars:
- quark star
- preon star
- boson star
- ... (see e.g. Wikipedia)

composition depends on mass (i.e. stellar evolution of the low-mass star in question)

- WDs: electron degeneracy
 - nuclei (He/O/C/Ne/Mg) are not in degenerate state
- NSs: neutron degeneracy too

degeneracy pressure → **stability** against (self-)gravity

Explosion types?

Explosion types?

Explosion types?

 $\mathsf{log}(\mathsf{L/L}_\odot)$

Credit: Roberta Humphreys & al. (2017, ApJ. 844.)

Credit: Roberta Humphreys & al. (2017, ApJ. 844.)

*stripping = loss of H-rich top layers In the context of *single* stars: 'stripping' is due to losing mass in the strong wind In the context of *binary* stars: mass transfer

Credit: Roberta Humphreys & al. (2017, ApJ. 844.)

M31 HRD

7.0

log L_o

- Observationally:
 - broad emission lines in the spectrum
 - meaning there is a nebula around the star
 - composition: (usually) H-free
- Theoretically:

FIRST OBSERVATION

1867: Wolf & Rayet

- Observationally:
 - broad emission lines in the spectrum
 - meaning there is a nebula around the star
 - composition: (usually) H-free
- Theoretically:

- Observationally:
 - broad emission lines in the spectrum
 - meaning there is a nebula around the star
 - composition: (usually) H-free
- Theoretically:

- a H-free star with a nebula around it can be produced by:
 - strong wind (single & binary stars) when the mass is very high (> 40 M_☉, but highly Z-dependent!)
 - binary interaction (needs a close-enough companion & a so-called non-conservative mass transfer, etc.)

- Observationally:
 - broad emission lines in the spectrum
 - meaning th
 - composit
- Theoretica
 - a H-free by:

Interesting to consider: in theory, a star could be H-free without a nebula, right?

would that still be a WR star?

can be produced

- strong wind (single & binary stars) when the mass is very high (> 40 M_☉, but highly Z-dependent!)
- binary interaction (needs a close-enough companion & a so-called non-conservative mass transfer, etc.)

*stripping = loss of H-rich top layers In the context of *single* stars: 'stripping' is due to losing mass in the strong wind In the context of *binary* stars: mass transfer

'stripped' progenitor* (e.g. a Wolf-Rayet star) → type Ib or Ic

red-supergiant progenitor → type II

4.0 -5 3.5 4.2 3.8 4.6 4.4 3.6 4.8 4.0 3.4 log Teff Credit: Roberta Humphreys & al. (2017, ApJ. 844.)

M31 HRD

7.0

log L_o

*stripping = loss of H-rich top layers In the context of *single* stars: 'stripping' is due to losing mass in the strong wind In the context of *binary* stars: mass transfer

Credit: Roberta Humphreys & al. (2

M31 HRD

What happens at

→ sub-Solar metallicities?
→ fast-rotating stars?
→ stars in a binary system?

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

→ also *end* their lives with more mass retained

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

→ also *end* their lives with more mass retained Consequence #1:

 if an iron core is able to form, then it will be a more massive one

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

- if an iron core is able to form, then it will be a more massive one
 - higher chance to form a BH after the collapse

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

- if an iron core is able to form, then it will be a more massive one
 - higher chance to form a BH after the collapse

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

- if an iron core is able to form, then it will be a more massive one
 - higher chance to form a BH after the collapse

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

→ also *end* their lives with more mass retained Consequence #1:

- if an iron core is able to form, then it will be a more massive one
 - higher chance to form a BH after the collapse
 - key question: is there something to STOP the collapse?
 - if yes: CCSN

type II, Ib/c

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

- if an iron core is able to form, then it will be a more massive one
 - higher chance to form a BH after the collapse
 - key question: is there something to STOP the collapse?
 - if yes: CCSN if no: direct fall-in into a BH
 type II, Ib/c no explosion

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

→ also *end* their lives with more mass retained Consequence #1:

Consequence #2:

(and still no rotation and no binary companion)

• Main effect: mass loss becomes WEAKER

→ stars live their lives with more mass retained

→ also *end* their lives with more mass retained Consequence #1:

Consequence #2:

sometimes even the iron-core won't be able to form

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^{-} \& e^{+}$

Collapse

Explosive O-burning → supernova

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

Explosive O-burning → supernova

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it?
...if not:

Explosive O-burning

→ supernova

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\ge 60 M_{\odot}$

Collapse

key question, as always:
is there something to stop it?
...if not:

Explosive O-burning

→ supernova

happens with stars \sim 140-260 M $_{\odot}$

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it?
...if not:

Explosive O-burning

→ supernova $\stackrel{\text{happens with stars}}{\sim 140-260 \text{ M}_{\odot}}$

pair-instability supernova (PISN)

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it?
...if not:

Explosive O-burning

→ supernova hap

happens with stars \sim 140-260 M $_{\odot}$

pair-instability supernova (PISN)

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it:
...if not:

Explosive O-burning

→ supernova happens with stars ~140-260 M_☉

pair-instability supernova (PISN)

No remnant!

<u>Note:</u> – iron-core stage is not even reached yet – whole star explodes – nucleosynthetic yield (ejected material's composition) is different from classical CCSNe – have we ever observed such a SN? …who knows

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it:
...if not:

Explosive O-burning

→ supernova happens with stars $\sim 140-260 \text{ M}_{\odot}$

pair-instability supernova (PISN)

No remnant!

<u>Note:</u> – iron-core stage is not even reached yet – whole star explodes – nucleosynthetic yield (ejected material's composition) is different from classical CCSNe – have we ever observed such a SN? ...who knows

> stars between 60–140 M_☉: collapse is stopped by the star re-gaining its hyrostatic stability

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to can happen $\gamma\gamma \rightarrow e^{-}\&e^{+}$ already in stars with $\ge 60 \text{ M}_{\odot}$

Collapse

key question, as always: is there something to stop it ... if not:

Explosive O-burning

happens with stars → supernova ${\sim}140{\text{-}}260~M_{\odot}$

pair-instability supernova (PISN)

No remnant!

Note: – iron-core stage is not even reached yet - whole star explodes – nucleosynthetic yield (ejected material's composition) is different from classical CCSNe – have we ever observed such a SN? ...who knows

might* lead to a

stars between 60−140 M_☉: collapse is stopped by the star re-gaining its hyrostatic stability 'pulsational pair-instability supernova' (pPISN)

because layers lost in the pulsations might collide and emit light above 260 M_☉: again direct collapse into BH (gravity wins)

Pair Instability

happens in *quite* massive stellar cores

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it:
...if not:

Explosive O-burning

→ supernova happens with stars ~140-260 M_☉

pair-instability supernova (PISN)

No remnant!

<u>Note:</u> – iron-core stage is not even reached yet – whole star explodes – nucleosynthetic yield (ejected material's composition) is different from classical CCSNe – have we ever observed such a SN? ...who knows

> stars between 60–140 M_☉: collapse is stopped by the star re-gaining its hyrostatic stability

might* lead to a **stability** '<u>pulsational</u> pair-instability supernova' (pPISN)

because layers lost in the pulsations *might* collide and emit light

(and still no rotation and no binary companion)

- Main effect: mass loss becomes WEAKER
 - → stars live their lives with more mass retained
 - → also *end* their lives with more mass retained

Consequence #1:

direct fall-in into a black hole (of mass ~20-40 M⊙)

Consequence #2:

pair-instabiliy developing, leading to a PISN (or maybe a pPISN) or again to direct fall-in to a BH (but this will be a very heavy BH with >150 M_☉)

The BHs of GW190521 shouldn't exist...

The BHs of GW190521 shouldn't exist...

