Gravitational-wave progenitors




Previously
on GW-progenitors...
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* /https://www.carleton.edu/goodsell/research/student-research/women/harvard/

Star brightness vs. temper

Mu Cephel

Make sure to read more!
Suggested article:
“Women Astronomers
at Harvard at the Turn of the Century”

Luminosity (Suns)

...also: come to Torun Observatory ;) :D M o
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Planck law
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here: as a function of frequency
(works with wavelength as well)

Note: there is a T value in it!



Radiation field of stars with different T 4

Spectral radiance [erg/'cm?2]

Spectral radiance [erg/s/Hz/crm/sr]

2.58-05 - . . 0.0007 T . T T . T T
(2°hig""2)" (x"*3){exp( (k] x/3000)-1) —— 3000 ——
(2°hic**2)" (x**3)/{exp( (k)" x/4000)-1) 4000
(2 hie™"2)" ("B} expl (k] K/B000]-1) «eoeees SO00 «oeeeeee
0.0006 [ v |
2e-05 i
£ 0.0005 1 r 'r-sl.annc ' I )
E b
1.5¢-05 £ b
at ! _ B L i
£ 0.0004 5
&, £l
8 = [
& 0003 | : | .
1e-05 - E . E L
= £
3 5
&  p.oooz2 - .
w L
5e-06 E i
o.0001 Lk 0 05 1.0 1.5 20
: wavelength {(microns)
—— .
a 1 e - ) 0 ..._.—_- 1 A1 1 g | 1 e
Ze+14 de414 Be+14 Be+1d le+15 0 Ses1d 1e+15  1.5e+15  2es15 258415 3e415  35e+15  desl15
Fraquency [1/s] Frequency [Hz]
]
| Lh V I
B(v.T.«) = 5 (3)
0.035 . . . . T . T
o0 — kj T =55000K logl/L. =61 M=803M.
. 5000 0.008 T . T T . -
003 - 1gggg ] FASTWIND SPgGTFCIJLIM
35000 | BLACK BODY
22000 0.007
0.025 | g — Fw
% 0.006 FLy =7.6e+05L .
| BB _
0oz b ] % 0.005 FLy =74e+05L 4
X 2 ,
E 0004} 2 Frel " =3.26405 L -
0.015 - g = BB
‘E. D~ﬂ03 FHEI = 2-6&"'05 L,:‘. _
>
3
0.01 | . 4 [ 0.002 g
0.001 .
0.005 g
) 0 I 1
0 4 3] 8 10 12 14 16 18 20
L= 1 1 L 1 L [t e ey
i 28415 4e+15 Be+15 Be+15 1e+186 128416 14416 Frequency [1 0" Hz]

Freguency [Hz]



Core collapse

* Gravity takes over

— end of the long-term equilibrium

- fall-in: on the free-fall timescale  [E——S——— S
e ...is there something to stop it?
- Well... it depends.

— Most of the time (“classical” case): a neutron star
forms in the center (“proto-neutron-star”)

* a neutron star is: one giant nucleus. dense. stable.

e bounce-back, shock waves, emission of neutrinos and
light = SUPERNOVA EXPLOSION



A Credit: Cowan & Thielemann (2004)
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— technically: a core-collapse sup . |
Credit: Foglizzo et al. (2015)
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Results of a CCSN

SN1987A |
SN2013by
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SN2000de
SN1980K |

* supernova lightcurve

— photons: emitted in the shock

— observed at many wavelenths
= spectrum

i decay phase: >°Co = °Fe credit: Bose, Kumar et al. (2015)
* explosive nuclear burning: r-process (rapid)

— lots of free neutrons:

rapid neutron-capture S

— elements heavier than iron !_
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Fate of the proto-NS

\ Not the Chandrasekhar
* depends on the mass of the object limit! ~1.4 M:
(= limit between
- Mini < ~20 Me: NS NSs and white dwarfs)
- > ~20 Mo: BH |

- but... explosion physics is complicate/(//,,,/,,/(g;//iﬂs stellar evolution. ..
» Tolman—-Oppenheimer—Volkoff limit: 2.16 Me

- maximum observed
mass of a neutron star
1s 2.14 Mo
for PSR J0740+6620
discovered in 2019




So far: core-collapse

Progenitor:
a massive star with
a H-rich envelope

* Classified by observers (simple pictu

* There are so many other types...

SUPEFHDVE‘] spectrum

N

Py print H present
No Si That’s what
/ \ we’ve actually
No He covered here
Type_la Typ Ib Typ Ic
Exploding Core-collapse supernova

white dwarf



Full supernova taxonomy as of 20222

Taxonomy 2007

Supernova Taxonomy 2014

thermonuclear core €%, thermonuclear i
S/ ——

I . 0 -

Sill . SLSN-I o} T3

I E no H yes E

Sill_ .. - |
DY IIb 12-91T ¥ 1a-02cx \ ™ .
-y Hel= 0o SLSN-II

L s
Ia no\ \ [8uperChandra? Brogsklined T I1In LBV—SNe ?J_y

?7? 1a-02ic Ing SNe
? .
SuperChandra? | groad-lined Ibn IIn LBV-SNe ? Turatto, Cappella ¢f: + Gal-Yam 2012
27 Interacting SNe —‘ :

Need to consider additionally (at the very least):
— rotation (leading to e.g. Gamma-ray bursts or Superluminous SNe)
— pair-creation mechanism (leading to Pair Instability Supernovae, PISNe)
— binarity (leading to, basically, anything we want :P but also to GWs ;) )



lToday...

CORPSES.

And also: some more explosions ;)
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\the Universe... §‘:{> - Sun’s lifetime: ~10%*10° yrs 5

— sub-Solar: may exceed 10*10" yrs




stellar ‘corpses’

What are compact objects? ===

e thl‘ee main typeS: other (speculative) degenerate stars:
= — quark star
— white dwarf — preon star
> degenerate — boson star
— neutron star stars — ... (see e.g. Wikipedia)
>

— black hole
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stellar ‘corpses’

What are compact objects? =

e thl‘ee main types: other (speculative) degenerate stars:
4 — quark star
— white dwarf e s taE
> degenerate — boson star
— neutron star stars — ... (see e.g. Wikipedia)
o’
L N
black hole composition depends on mass
(i.e. stellar evolution of the
e WDs: electron degenerac low-mass star in question)
_

- nuclei (He/O/C/Ne/Mg) are not in degenerate state

* NSs: neutron degeneracy too

degeneracy pressure — stability against
(self-)gravity
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— also white dwarfs
(=compact object,
stellar remnant)
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Explosion types?
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Explosion types?
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Sun & sub-Solar masses:

— no explosion at the end of stellar life
i.e. ejection of the outer layers of the red giant,
planetary nebula around the WD

— LATER: supernova type la

thermonuclear explosion of the WD
IF there is a binary companion to

\ transfer mass onto it

Side-note: type Ia Sne 0.1 1

are standard candles Mass (solar mass)
in cosmology
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Explosion types?
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== Salpeter (1955)
== Miller-Scalo (1979)
== Kroupa (2001)

Chabrier (2003)

100

Sun & sub-Solar masses: ,
Massive stars and

. . \ AR \
— no explosion at the end of stellar life intermediate-mass stars:

i.e. ejection of the outer layers of the red giant,
planetary nebula around the WD

EXPLOSION
most of the time)
.: core-collapse
supernovae:

(
— LATER: supernova type la

thermonuclear explosion of the WD
IF there is a binary companion to

\ transfer mass onto it

Side-note: type la Sne 0.1 1 100

are standard candles Mass (solar mass)
in cosmology




Way towards a type II supernova:
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Way towards a type II supernova:
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massive star which evolves to be a

4.7 | red supergiant (i.e. with H-rich envelope)
4.6 | reaches the stage of iron-core formation
and undergoes core collapse
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Way towards a type II supernova:

massive star which evolves to be a
red supergiant (i.e. with H-rich envelope)
reaches the stage of iron-core formation

and undergoes core collapse
Credit: Roen Kelly
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Way towards a type II supernova:

massive star which evolves to be a
red supergiant (i.e. with H-rich envelope)
reaches the stage of iron-core formation

and undergoes core collapse
Salpeter Inital Mass Function
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*stripping = loss of H-rich top layers
In the context of single stars:
‘stripping’ is due to losing

mass in the strong wind

In the context of binary stars:

mass transfer

‘stripped’ progenitor*
> (e.g. a Wolf-Rayet star)
— type Ib or Ic

> red-supergiant progenitor
- type 11




Side-notes on Wolf-Rayet stars

* Observationally:

— broad emission lines in the spectrum
— meaning there is a nebula around the star

— composition: (usually) H-free

* Theoretically:
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Side-notes on Wolf-Rayet stars
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— broad emission lines in the spectrum

- meaning there is a nebula around the star

FIRST OBSERVATION

— composition: (usually) H-free

* Theoretically:




Side-notes on Wolf-Rayet stars

Stel]

. Nebular Spectra

* Observationally: @ ‘ |
— broad emission lines in the spectrum

- meaning there is a nebula around the star

FIRST OBSERVATION

— composition: (usually) H-free

* Theoretically:

— a H-free star with a nebula around it can be produced
by:
* strong wind (single & binary stars) when the mass
is very high (> 40 Mo, but highly Z-dependent!)

* binary interaction (needs a close-enough companion
& a so-called non-conservative mass transfer, etc.)



Side-notes on Wolf-Rayet stars

. Stellar Spectra

* Observationally:
— broad emission lines in the spectrum

— meaning tk : : e star
Interesting to consider:

gl uleles i theory, a star could be

! H-free without a nebula,
e Theoretica b right?

WS B Guld that still be a WR star? an be produced
by:
* strong wind (single & binary stars) when the mass

is very high (> 40 Mo, but highly Z-dependent!)

* binary interaction (needs a close-enough companion
& a so-called non-conservative mass transfer, etc.)
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*stripping = loss of H-rich top layers
In the context of single stars:
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In the context of binary stars:

mass transfer
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*stripping = loss of H-rich top layers
In the context of single stars:
‘stripping’ is due to losing

mass in the strong wind

In the context of binary stars:

mass transfer

‘stripped’ progenitor*
(e.g. a Wolf-Rayet star)
— type Ib or Ic
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This is only true: s
at solar metal

N gl'e stars *stripping = loss of H-rich top layers
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What happens at

— sub-Solar metallicities?
— fast-rotating stars?
— stars in a binary system?
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e Main effect: mass loss becomes WEAKER
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more massive one

— higher chance to form a BH after the collapse
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(and still no rotation and no binary companion)

e Main effect: mass loss becomes WEAKER
— stars live their lives with more mass retained

— also end their lives with more mass retained

Consequence #1:

e if an iron core is able to form, then it will be a
more massive one

— higher chance to

- key questio there something to STOP

the collaps
— if yes: CCSN * if no: direct fall-in into a BH §

type 11, Ib/c no explosion
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Sub-Solar metallicities

(and still no rotation and no binary companion)
* Main effect: mass loss becomes WEAKER
— stars live their lives with more mass retained

— also end their lives with more mass retained

Consequence #1:

Consequence #2:

sometimes even the iron-core won’t be
able to form
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Why? Pair Instability

happens in quite massive stellar cores

Photon pressure
drops due to

can happen Note:
YY — e- & e+ already in stars
Rae 00 Mo — whole star explodes
Collapse — nucleosynthetic yield (ejected
material’s composition) is
key question, as always: different from classical CCSNe
is there something to stop it PRI N SR T et BT RSN E,

IR O ...who knows

Explosive O-burning

— supernova happens with stars stars between 60-140 Me:
~140-260 Mo :

collapse is

pair-instability supernova (PISN) stopped by the star

re-gaining its hyrostatic

might* lead to a stability
‘pulsational pair-instability supernova’ (pPISN)

because layers lost in the pulsations
might collide and emit light

No remnant!
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above 260 Mo:

again direct collapse into BH Pa i r I n S t a bi |. i ty

(gravity wins)

™ ! 4 happens in quite massive stellar cores

Photon pressure
drops due to

can happen Note:
YY — e- & e+ already in stars
Rae 00 Mo — whole star explodes
Collapse — nucleosynthetic yield (ejected
material’s composition) is
key question, as always: different from classical CCSNe
ERCRMUM DS A  _ have we ever observed such a SN?

IR O ...who knows

Explosive O-burning

— supernova happens with stars stars between 60-140 Me:
~140-260 Mo :
collapse is
pair-instability supernova (PISN) stopped by the star
re-gaining its hyrostatic
No remnant! ,, might* lead to a stability
‘pulsational pair-instability supernova’ (pPISN)

because layers lost in the pulsations
might collide and emit light



Sub-Solar metallicities

(and still no rotation and no binary companion)

e Main effect: mass loss becomes WEAKER

— stars live their lives with more mass retained

— also end their lives with more mass retained

Consequence #1:

direct fall-in into
a black hole

(of mass ~20-40 Mo)

Consequence #2:

pair-instabiliy developing, leading to
a PISN (or maybe a pPISN)
or again to direct fall-in to a BH
(but this will be a very heavy BH with >150 Mo)
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