Gravitational-wave progenitors

Dorottya Szécsi

dorottya.szecsi@gma<mark>il.com</mark>

Lecture #7

NCU, Summer Semester 2022

Previously on GW-progenitors...

What are <u>compact objects</u>? = remnants

- three main types:
 - white dwarf
 - neutron star
 - black hole
- degenerate stars
- other (speculative) degenerate stars:
- quark star
- preon star
- boson star
- ... (see e.g. Wikipedia)

composition depends on mass (i.e. stellar evolution of the low-mass star in question)

- WDs: electron degeneracy
 - nuclei (He/O/C/Ne/Mg) are not in degenerate state
- NSs: neutron degeneracy too

degeneracy pressure → **stability** against (self-)gravity

Explosion types?

Way towards a type II supernova:

 $\mathsf{log}(\mathsf{L/L}_\odot)$

Way towards a type II supernova:

This is only true:single starsat solar metallicityno (or slow) rotation

*stripping = loss of H-rich top layers In the context of *single* stars: 'stripping' is due to losing mass in the strong wind In the context of *binary* stars: mass transfer

Side-notes on Wolf-Rayet stars

- Observationally:
 - broad emission lines in the spectrum
 - meaning there is a nebula around the star
 - composition: (usually) H-free
- Theoretically:

- a H-free star with a nebula around it can be produced by:
 - strong wind (single & binary stars) when the mass is very high (> 40 M_☉, but highly Z-dependent!)
 - binary interaction (needs a close-enough companion & a so-called non-conservative mass transfer, etc.)

What happens at

→ sub-Solar metallicities?
→ fast-rotating stars?
→ stars in a binary system?

Sub-Solar metallicities

(and still no rotation and no binary companion)

- Main effect: mass loss becomes WEAKER
 - → stars live their lives with more mass retained
 - → also *end* their lives with more mass retained

Consequence #1:

direct fall-in into a black hole (of mass ~20-40 M⊙)

key question: is there something to STOP the collapse? if yes: CCSN (type II, Ib/c) if no: direct fall-in into a BH (no explosion) **Consequence #2:**

pair-instabiliy developing, leading to a PISN (or maybe a pPISN) or again to direct fall-in to a BH (but this will be a very heavy BH with >150 M_☉)

Why?

Pair Instability

happens in *quite* massive stellar cores

mass values quoted here mean M_{ZAMS}

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it?
...if not:

Explosive O-burning

→ supernova hap

happens with stars \sim 140-260 M $_{\odot}$

pair-instability supernova (PISN)

No remnant!

above 260 M_☉: again direct collapse into BH (gravity wins)

Pair Instability

happens in *quite* massive stellar cores

mass values quoted here mean M_{ZAMS}

Photon pressure drops due to $\gamma\gamma \rightarrow e^- \& e^+$ already in stars with $\geqq 60 \text{ M}_{\odot}$

Collapse

key question, as always:
is there something to stop it:
...if not:

Explosive O-burning

→ supernova $\stackrel{\text{happens with stars}}{\sim 140-260 \text{ M}_{\odot}}$

pair-instability supernova (PISN)

No remnant!

<u>Note:</u> – iron-core stage is not even reached yet – whole star explodes – nucleosynthetic yield (ejected material's composition) is different from classical CCSNe – have we ever observed such a SN? ...who knows

might* lead to a

stars between 60–140 M_☉: collapse is stopped by the star re-gaining its hyrostatic stability

'<u>pulsational</u> pair-instability supernova' (pPISN)

because layers lost in the pulsations *might* collide and emit light

The BHs of GW190521 shouldn't exist...

What happens at

→ sub-Solar metallicities?
 → fast-rotating stars?
 → stars in a binary system?

Massive stars rotate... sometimes quite fast

especially at low Z!

Massive stars rotate... sometimes quite fast

How do we know that? → line profile

Massive stars rotate... sometimes quite fast

Rotation can effect the structure

- centrifugal force
 - oblate shape
 - extra mixing inside!

Rotation can effect the structure

Rotation can effect the structure

- centrifugal force
 - oblate shape
 - extra <u>mixing</u> inside!
- extreme case:
 - "break-up" rotation"
 - $F_{cen} \ge F_{grav}$ "Keplerian break-up frequency" Ten
 - leads to extra mass los
 - mass dependent
 e.g. "B[e] star" phenomenon

Credit: Jermyn+18

Heat Gas

Rotation can effect the structure

- centrifugal force
 - oblate shape
 - extra <u>mixing</u> inside!
- extreme case:
 - "break-up" rotation"
 - $F_{cen} \ge F_{grav}$ "Keplerian break-up frequency" Ten
 - leads to extra mass los
 - mass dependent
 e.g. "B[e] star" phenomenon
- non-extreme case: mixing & mass loss

Pressure

Credit: Jermyn+18

But: metallicity is important

- metallicity mass loss
 - high $Z \rightarrow high dM/dt$
- mass loss → angular momentum loss
- rotational mixing becomes important at lower metallicities
 - Solar Z: fast spin-down

= Quasi-chemically homogeneous evolution

In the Hertzsprung–Russell diagram?

Credit: M. Cantiello

• "core collapse" ≠ "collapsar"

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar

A BH or a NS forms in the middle. The proto-NS is probably highly magnetized.

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar

A BH or a NS forms in the middle. The proto-NS is probably highly magnetiz<u>ed.</u>

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar
- collapsar \rightarrow accretion disc & jets

A BH or a NS forms in the middle. The proto-NS is probably highly magnetized.

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar
- collapsar \rightarrow accretion disc & jets

Synchrotron radiation accelerated in the jet. γ-rays emitted.

A BH or a NS forms in the middle. The proto-NS is probably highly magnetized.

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar
- collapsar → accretion disc & jets -

Synchrotron radiation accelerated in the jet. γ-rays emitted.

- if the jet aligns with the line of sight: long-duration gamma-ray burst may be observed (L-GRB)
 - accompanied by a SN Ib/Ic

A BH or a NS forms in the middle. The proto-NS is probably highly magnetized.

- "core collapse" ≠ "collapsar"
- core collapse + fast rotation = collapsar
- collapsar → accretion disc & jets -

Synchrotron radiation accelerated in the jet. γ-rays emitted.

- if the jet aligns with the line of sight:
 long-duration gamma-ray burst may be observed (L-GRB)
 - accompanied by a SN Ib/Ic
- if not aligned: SN Ib/Ic

What are GRBs?

20

0.0

Trigger 1405

Observationally...

15 40 -5 Seconds e.g.: Trigger 1974 30 20 10 20 -5Seconds Trigger 2514 150 100 50 0 -2Seconds Trigger 3152 60 40

0.5

Seconds

– during the cold war...

– today: satellite missions
e.g.:
Fermi Gamma-ray Space Telescope
Neil Gehrels Swift Observatory etc.

daily observations

majority of the energy is measured in γ-rays

there is a so-called
"afterglow" observed at
softer wavelength
(X-ray, optical, IR, radio...)
after the prompt γ-emission

At least two, physically distinct types of objects

Short/hard: two Compact Objects at merger

At least two, physically distinct types of objects

Short/hard: two Compact Objects at merger

At least two, physically distinct types of objects

Short/hard: two Compact Objects at merger

→ sub-Solar metallicities?
 → fast-rotating stars?
 → stars in a binary system?

→ stars in a binary system?

→ stars in a binary system?

Summary on stellar rotation:

• especially relevant at low Z (cf. the balerina)

→ stars in a binary system?

- especially relevant at low Z (cf. the balerina)
- main effect: extra mixing ("rotational mixing")

→ stars in a binary system?

- especially relevant at low Z (cf. the balerina)
- main effect: extra mixing ("rotational mixing")
- might lead to chemically homogeneous evolution
 - if so: the star becomes a <u>hot</u> He-star (WR??)
 - if it survives until Fe-core, dies as a collapsar → L-GRB
 + SN Ib/c

→ stars in a binary system?

- especially relevant at low Z (cf. the balerina)
- main effect: extra mixing ("rotational mixing")
- might lead to chemically homogeneous evolution
 - if so: the star becomes a <u>hot</u> He-star (WR??)
 - if it survives until Fe-core, dies as a collapsar → L-GRB
 + SN Ib/c
- if rotation is not fast enough, normal evolution
 - red supergiant, CCSN type II

→ stars in a binary system? Coming soon...

- especially relevant at low Z (cf. the balerina)
- main effect: extra mixing ("rotational mixing")
- might lead to chemically homogeneous evolution
 - if so: the star becomes a <u>hot</u> He-star (WR??)
 - if it survives until Fe-core, dies as a collapsar → L-GRB
 + SN Ib/c
- if rotation is not fast enough, normal evolution
 - red supergiant, CCSN type II

REMINDER

REMINDER: Exam & grading

Oral examination.

Assessment criteria:

- fail: below 50 pts (below 50%)
- satisfactory: 50 pts (50%)
- satisfactory plus: 60 pts (60%)
- good: 70 pts (70%)
- good plus: 75 pts (75%)
- very good: 80 pts (80%)

Extra options...

- active participation*: +20%
- paper presentation**: +40%

*asking questions during class, thinking out loud, showing interest

**chosing a GW-related paper from arXiv/ADS (accepted for publication after 24.01.2022) and giving a "journal club" style presentation (with slides) of ~30 min

Where to find the relevant papers?

• NASA ADS: https://ui.adsabs.harvard.edu/

$\leftarrow \rightarrow$ C \textcircled{a}	〇 各 https://ui.adsabs. harvard.edu	133% ★	ତ 🛃 📼 🕫 💁 💁 🗳 🗛 =
ja) ads		🗩 Feedback 🗸 🝺 ORCID -	About - Sign Up Log In
astrophysics data system			
	Classic Form Modern For	m Paper Form	
	QUICK FIELD: Author First Author Abstract All Se	earch Terms 🔹	X Q

• arXiv: https://arxiv.org/ (preprints...)

What is expected?

• 20 minutes + discussion

- WHICH MEANS:
 - don't need to explain the whole paper!!
 - explain what's in the **abstract** & main **conclusion**
 - show **<u>1 figure</u>** (the most important or interesting)

What is expected?

• 20 minutes + discussion

- WHICH MEANS:
 - don't need to explain the whole paper!!
 - explain what's in the **abstract** & main **conclusion**
 - show <u>**1 figure**</u> (the most important or interesting)

Tell a story!

- make it understandable & exciting
 - don't just boringly list the results
 - instead: build a *narrative*

A list of suggested examples

• But feel free to choose anything else you like!

Finke et al.: Modified gravitational wave propagation and the binary neutron star mass function https://ui.adsabs.harvard.edu/abs/2022PDU....3600994F/abstract

Perna et al.: Host galaxies and electromagnetic counterparts to binary neutron star mergers across the cosmic time: detectability of GW170817-like events https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.2654P/abstract

Gao et al.: A higher probability of detecting lensed supermassive black hole binaries by LISA https://ui.adsabs.harvard.edu/abs/2022MNRAS.512....1G/abstract

Rizzuto et al.: Black hole mergers in compact star clusters and massive black hole formation beyond the mass gap https://ui.adsabs.harvard.edu/abs/2022MNRAS.512..884R/abstract

Mapelli et al.: The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5797M/abstract

Korol et al.: Observationally driven Galactic double white dwarf population for LISA https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5936K/abstract

Zou et al.: Gravitational-wave Emission from a Primordial Black Hole Inspiraling inside a Compact Star: A Novel Probe for Dense Matter Equation of State https://ui.adsabs.harvard.edu/abs/2022ApJ...928L..13Z/abstract

Vigna-Gómez et al.: Stellar response after stripping as a model for common-envelope outcomes https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2326V/abstract

Mohan et al.: Detectability of electromagnetic counterparts from neutron star mergers: prompt emission versus afterglow https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2356M/abstract

Biscoveanu et al.: The effect of spin mismodelling on gravitational-wave measurements of the binary neutron star mass distributes://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4350B/abstract

Gualandris et al.: Eccentricity evolution of massive black hole binaries from formation to coalescence https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4753G/abstract