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Previously 
on GW-progenitors...



  

#stars: Φ(m) ~ m–2.35

Credit: Roen Kelly

sub-Solar masses:

– also white dwarfs 
(=compact object,
stellar remnant)

– however: 
brown dwarf stars

may live longer than
the Universe…

Sun  WD→
(eventually a black dwarf)

Massive stars:
NSs or BHs*

intermediate-mass stars
(~4–8 M☉):

WDs (MgNe) or NSs

Credit: Roen Kelly

*Maximum size ofBHs at Solar Zis around 40 M☉due to strongmass loss of the massive star progenitor



  

What are compact objects?

● three main types:
– white dwarf
– neutron star
– black hole 

● WDs: electron degeneracy
– nuclei (He/O/C/Ne/Mg) are not in degenerate state

● NSs: neutron degeneracy too

degeneracy pressure  → stability against 
(self-)gravity

other (speculative) degenerate stars:
– quark star
– preon star
– boson star
– … (see e.g. Wikipedia)

degenerate 
stars

composition depends on mass
(i.e. stellar evolution of the
low-mass star in question)

stellar ‘corpses’
= remnants



  

Explosion types?

Sun & sub-Solar masses:

– no explosion at the end of stellar life
i.e. ejection of the outer layers of the red giant,

planetary nebula around the WD

– LATER: supernova type Ia
thermonuclear explosion of the WD

IF there is a binary companion to
transfer mass onto it

Side-note: type Ia Sne 
are standard candles

in cosmology

Massive stars and 
intermediate-mass stars?

Credit: Roen Kelly

EXPLOSION
(most of the time)
e.g.: core-collapse

supernovae:
type II

type Ib & Ic
…or something else



  

Way towards a type II supernova:

massive star which evolves to be a
red supergiant (i.e. with H-rich envelope) 
reaches the stage of iron-core formation
and undergoes core collapse



  

Way towards a type II supernova:

massive star which evolves to be a
red supergiant (i.e. with H-rich envelope) 
reaches the stage of iron-core formation
and undergoes core collapse

Credit: Roen Kelly

#stars: Φ(m) ~ m–2.35



  

red-supergiant progenitor
 → type II

*stripping = loss of H-rich top layers
In the context of single stars:

’stripping’ is due to losing
mass in the strong wind

In the context of binary stars:
mass transfer

red-supergiant progenitor
 → type II

‘stripped’ progenitor*
(e.g. a Wolf-Rayet star)

 → type Ib or Ic

  This is only true: This is only true:    single stars    single stars 
  at solar metallicity at solar metallicity 

  no (or slow) rotation no (or slow) rotation 



  

Side-notes on Wolf-Rayet stars

● Observationally:
– broad emission lines in the spectrum
– meaning there is a nebula around the star
– composition: (usually) H-free

● Theoretically:
– a H-free star with a nebula around it can be produced 

by:
● strong wind (single & binary stars) when the mass 

is very high (> 40 M☉, but highly Z-dependent!) 
● binary interaction (needs a close-enough companion 

& a so-called non-conservative mass transfer, etc.)



  

What happens at

 → sub-Solar metallicities?
  → fast-rotating stars?

  → stars in a binary system?



  

Sub-Solar metallicities

● Main effect: mass loss becomes WEAKER

 → stars live their lives with more mass retained

 → also end their lives with more mass retained

(and still no rotation and no binary companion)

 Consequence #1:  Consequence #2: 

direct fall-in into 
a black hole

(of mass ~20-40 M☉)
pair-instabiliy developing, leading to 

a PISN (or maybe a pPISN)
or again to direct fall-in to a BH 

(but this will be a very heavy BH with >150 M☉)
key question: is there something to STOP 
the collapse?      if yes: CCSN (type II, Ib/c)
if no: direct fall-in into a BH (no explosion)



  

Why?  Pair Instability 

Photon pressure 
drops due to
γγ  e- & e+→

Collapse

Explosive O-burning 
  supernova →

No remnant!

happens in quite massive stellar cores

can happen 
already in stars
with  60 M⪆ ☉ 

key question, as always:
is there something to stop it?
…if not:

happens with stars
~140-260 M☉ 

 pair-instability supernova (PISN) 

mass values quoted here mean MZAMS



  

Why?  Pair Instability 

Photon pressure 
drops due to
γγ  e- & e+→

Collapse

Explosive O-burning 
  supernova →

No remnant!

happens in quite massive stellar cores

can happen 
already in stars
with  60 M⪆ ☉ 

key question, as always:
is there something to stop it?
…if not:

happens with stars
~140-260 M☉ 

 pair-instability supernova (PISN) 

Note:
– iron-core stage is not even reached yet

– whole star explodes
– nucleosynthetic yield (ejected 

material’s composition) is
different from classical CCSNe

– have we ever observed such a SN?
…who knows

stars between 60–140 M☉:
collapse is

stopped by the star 
re-gaining its hyrostatic

stabilitymight* lead to a
‘pulsational pair-instability supernova’ (pPISN)

because layers lost in the pulsations 
might collide and emit light

above 260 M☉:
again direct collapse into BH

(gravity wins)

mass values quoted here mean MZAMS



  

The BHs of GW190521 shouldn’t exist...

BH no go zone

GW190521: 

m1 = 85 (+21/−14) 
Msun

m2 = 66 (+17/−18) 
Msun

under active research



  

What happens at

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

Today...



  

Massive stars rotate… sometimes quite fast

Credit: Ramírez-Agudelo et al. (2013)

Data:
single O-stars 

in the LMC  

 especially at low Z! 



  

Massive stars rotate… sometimes quite fast

Credit: Ramírez-Agudelo et al. (2013)

Data:
single O-stars 

in the LMC  

How do we know that?  line profile→

Credit: LumenLearning Astronomy



  

Massive stars rotate… sometimes quite fast

Credit: Ramírez-Agudelo et al. (2013)

Data:
single O-stars 

in the LMC  

How do we know that?  line profile→

Credit: LumenLearning Astronomy

inclination?

v*sin(i)
(“projected rotational

velocity”)



  

Rotation can effect the structure
● centrifugal force

– oblate shape
– extra mixing inside!

Theoretically considered:
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Rotation can effect the structure
● centrifugal force

– oblate shape
– extra mixing inside!

● extreme case: 
– “break-up” rotation
– Fcen  F≥ grav

– leads to extra mass loss
– mass dependent

e.g. “B[e] star” phenomenon

“critical rotation”
“Keplerian break-up

 frequency”

Credit: Jermyn+18

Theoretically considered:



  

Rotation can effect the structure
● centrifugal force

– oblate shape
– extra mixing inside!

● extreme case: 
– “break-up” rotation
– Fcen  F≥ grav

– leads to extra mass loss
– mass dependent

e.g. “B[e] star” phenomenon

“critical rotation”
“Keplerian break-up

 frequency”

Credit: Jermyn+18

Theoretically considered:

● non-extreme case: mixing & mass loss



  

Rotational mixing



  

Rotational mixing



  

Rotational mixing



  

Rotational mixing

Credit: Oksala+16

take care:
Y-axis is
the radius!
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Credit: Oksala+16
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Rotational mixing

Credit: Oksala+16
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Rotational mixing

Credit: Oksala+16

take care:
Y-axis is
the radius!



  

Rotational mixing

Credit: Oksala+16

take care:
Y-axis is
the radius!

Credit: Yoon’15



  

But: metallicity is important

● metallicity  mass loss↔
– high Z  high dM/dt→

● mass loss  angular →
momentum loss

● rotational mixing 
becomes important at 
lower metallicities
– Solar Z: fast spin-down



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram?

Credit: M. Cantiello

= Quasi-chemically homogeneous evolution



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram:

Credit: M. Cantiello

= Quasi-chemically homogeneous evolution



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram:

 ?? 

Credit: M. Cantiello

= Quasi-chemically homogeneous evolution



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram:

 ?? 

Credit: M. Cantiello

a hot, He-rich star

depending on wind properties,
might be a WR star (emission lines)

or something else? (absorbtion lines)

= Quasi-chemically homogeneous evolution



  

Chemically homogeneous evolution

In the Hertzsprung–Russell diagram:

 ?? 

Credit: M. Cantiello

Type of final explosion?

type Ib/Ic
(core collapse)

but ROTATING!!

= Quasi-chemically homogeneous evolution



  

Collapsar

● “core collapse”  “collapsar”≠



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar
● collapsar  accretion disc & jets→

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar
● collapsar  accretion disc & jets→

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.

Synchrotron radiation
accelerated in the jet.

-rays emitted.γ



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar
● collapsar  accretion disc & jets→
● if the jet aligns with the line of sight: 

long-duration gamma-ray burst 
may be observed (L-GRB)
– accompanied by a SN Ib/Ic

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.

Synchrotron radiation
accelerated in the jet.

-rays emitted.γ



  

Collapsar

● “core collapse”  “collapsar”≠
● core collapse + fast rotation = collapsar
● collapsar  accretion disc & jets→
● if the jet aligns with the line of sight: 

long-duration gamma-ray burst 
may be observed (L-GRB)
– accompanied by a SN Ib/Ic

● if not aligned: SN Ib/Ic

A BH or a NS forms
in the middle. 

The proto-NS is probably 
highly magnetized.

Synchrotron radiation
accelerated in the jet.

-rays emitted.γ



  

What are GRBs?

– during the cold war…

– today: satellite missions
e.g.:
Fermi Gamma-ray Space Telescope
Neil Gehrels Swift Observatory etc.

– daily observations

– majority of the energy is
measured in -raysγ

– there is a so-called
”afterglow” observed at
softer wavelength 
(X-ray, optical, IR, radio…)
after the prompt -emissionγ

Observationally...
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a “collapsar”
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a “collapsar”

 binarity! 

GWs! 



  

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?
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● especially relevant at low Z (cf. the balerina)
● main effect: extra mixing (“rotational mixing”)

 → sub-Solar metallicities?
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  → stars in a binary system?

Summary on stellar rotation:



  

 cf. pair-instability… 

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

● especially relevant at low Z (cf. the balerina)
● main effect: extra mixing (“rotational mixing”)
● might lead to chemically homogeneous evolution

– if so: the star becomes a hot He-star (WR??)
– if it survives until Fe-core, dies as a collapsar  L-GRB→

Summary on stellar rotation:

+ SN Ib/c



  

 cf. pair-instability… 

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

● especially relevant at low Z (cf. the balerina)
● main effect: extra mixing (“rotational mixing”)
● might lead to chemically homogeneous evolution

– if so: the star becomes a hot He-star (WR??)
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● if rotation is not fast enough, normal evolution
– red supergiant, CCSN type II

Summary on stellar rotation:

+ SN Ib/c



  

 cf. pair-instability… 

 → sub-Solar metallicities?
   → fast-rotating stars? 
  → stars in a binary system?

● especially relevant at low Z (cf. the balerina)
● main effect: extra mixing (“rotational mixing”)
● might lead to chemically homogeneous evolution

– if so: the star becomes a hot He-star (WR??)
– if it survives until Fe-core, dies as a collapsar  L-GRB→

● if rotation is not fast enough, normal evolution
– red supergiant, CCSN type II

Summary on stellar rotation:

+ SN Ib/c

Coming soon…



  

REMINDER



  

REMINDER: Exam & grading

Oral examination. 
Assessment criteria:

● fail: below 50 pts (below 50%)

● satisfactory: 50 pts (50%)

● satisfactory plus: 60 pts (60%)

● good: 70 pts (70%)

● good plus: 75 pts (75%)

● very good: 80 pts (80%)

Extra options... 

● active participation*: +20%

● paper presentation**: +40%

*asking questions during class, 
thinking out loud, showing interest

**chosing a GW-related paper from 
arXiv/ADS (accepted for publication 
after 24.01.2022) and giving a “journal 
club” style presentation (with slides) 
of ~30 min



  

Where to find the relevant papers?

● NASA ADS:      https://ui.adsabs.harvard.edu/

● arXiv: https://arxiv.org/ (preprints…)

https://ui.adsabs.harvard.edu/
https://arxiv.org/


  

What is expected?

● 20 minutes + discussion

● WHICH MEANS:
– don’t need to explain the whole paper!!
– explain what’s in the abstract & main conclusion
– show 1 figure (the most important or interesting)



  

What is expected?

● 20 minutes + discussion

● WHICH MEANS:
– don’t need to explain the whole paper!!
– explain what’s in the abstract & main conclusion
– show 1 figure (the most important or interesting)
– make it understandable & exciting 

● don’t just boringly list the results
● instead: build a narrative

Tell a story!



  

A list of suggested examples
● But feel free to choose anything else you like!

Finke et al.: Modified gravitational wave propagation and the binary neutron star mass function 
https://ui.adsabs.harvard.edu/abs/2022PDU....3600994F/abstract

Perna et al.: Host galaxies and electromagnetic counterparts to binary neutron star mergers across 
the cosmic time: detectability of GW170817-like events 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.2654P/abstract

Gao et al.: A higher probability of detecting lensed supermassive black hole binaries by LISA 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512....1G/abstract

Rizzuto et al.: Black hole mergers in compact star clusters and massive black hole formation beyond the mass gap 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512..884R/abstract

Mapelli et al.: The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: 
rates, masses, spins, and mixing fractions 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5797M/abstract

Korol et al.: Observationally driven Galactic double white dwarf population for LISA 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5936K/abstract

Zou et al.: Gravitational-wave Emission from a Primordial Black Hole Inspiraling inside a Compact Star: 
A Novel Probe for Dense Matter Equation of State  
https://ui.adsabs.harvard.edu/abs/2022ApJ...928L..13Z/abstract

Vigna-Gómez et al.: Stellar response after stripping as a model for common-envelope outcomes 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2326V/abstract

Mohan et al.: Detectability of electromagnetic counterparts from neutron star mergers: prompt emission versus afterglow 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2356M/abstract

Biscoveanu et al.: The effect of spin mismodelling on gravitational-wave measurements of the binary neutron star mass distribution 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4350B/abstract

Gualandris et al.: Eccentricity evolution of massive black hole binaries from formation to coalescence 
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4753G/abstract

https://ui.adsabs.harvard.edu/abs/2022PDU....3600994F/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.2654P/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512....1G/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512..884R/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5797M/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5936K/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...928L..13Z/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2326V/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2356M/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4350B/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.4753G/abstract
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