Gravitational-wave progenitors




What are we going to talk about?

* the PROGENITORS of gravitational-waves:

- compact object progenitors: black holes, neutron stars...
- stellar progenitors: massive stars, binaries...

* birth environments of GW progenitors:
— stellar populations in clusters and galaxies

- ‘sister’ phenomena: supernovae, gamma-ray bursts

- cosmology, star-formation in the early Universe

* General Relativity, Einstein equations

* GW-detectors in past, present, future (LIGO/Virgo etc.)



Gravitational wave Black hole Spacetime
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Exam & grading

Oral examination.
Assessment criteria:

fail: below 50 pts (below 50%)
satisfactory: 50 pts (50%)
satisfactory plus: 60 pts (60%)
good: 70 pts (70%)

good plus: 75 pts (75%)

very good: 80 pts (80%)

Extra options...

* active participation®: +20%

* paper presentation**: +40%

*asking questions during class,
thinking out loud, showing interest

**chosing a GW-related paper from
arXiv (accepted for publication after
24.01.2022) and giving a “journal
club” style presentation (with slides)
of ~30 min



Massive stars



Massive stars vs. low-mass stars

massive: > 8 Mo low-mass: < 8 Mg
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Question:

SIZE vs. MASS

Are these the same?
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Massive stars vs. low-mass stars
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Reason: stars evolve
— stellar evolution

Life Cycle of a Star

® -
P e low-mass: < 8 Mg

sl A Star

. F.i Red Giant Planetary Nebula

e -

=

o \ -
Neutron Star . ;
Stellar Nebula . - — N _ massive: > 8 Mg
Massive Star @‘

Red Supernova




How to do it more scientifically?

The HRD

Hertzsprung—Russell diagram
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The HRD

Hertzsprung—Russell diagram




Advantages of the HRD

* radius can be easily read

red giant Out
- equiradial lines

- due to Stephan-Bolzmann

law (stars are practically
Black Bodies...)

* color of the star can be
easily read out (~surface
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Hertzsprung—Russell Diagram
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Further advantages of the HRD

* allows comparison
of an observed star
and its
corresponding
stellar
evolutionary
model

* allows comparison
of low-mass stars
VS. massive stars
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The real (boring) scientific version:

M31 HRD

7.0

logLg

3.4

Credit: Roberta Humphreys & al. (2017, Ap]. 844.)

e X: lgTeff [K]

— logarithmic & upside
down (historical
reasons)

* Y:1g(L/Lo)

— lines: theoretical
models (not always,
but usually)

— dots: observed stars
(not always, but
usually)

- ZAMS: Zero-Age
Main Sequence



COFFEE BREAK :)
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What is a star?

hot, dense plavzmav e

2 \)\'\O 5\3“6(6- i 3,,\,_ v‘

: What is inside? s

cquitibriom: [T |



What is a star?

hot, dense plavzmav e

(o) Fa o
e C il
sone

i What is inside? o ; i

cquitibriom: [T |



Theoretical modelling of the stellar structure

equation of definition of mass (DR
equation of hydrostatic equilibrium (2)8

equation of energetic balance

equation of energy transport,

Guilera+ 11



Theoretical modelling of the stellar structure

e mass conservation (R

equation of hydrostatic equilibrium  (2) |

equation of energetic balance

equation of energy transport,

Guilera+ 11



Theoretical modelling of the stellar structure

e mass conservation (R

momentum conservation (2)8

equation of energetic balance (3)

equation of energy transport,

Guilera+ 11



Theoretical modelling of the stellar structure

e mass conservation (R

momentum conservation (2)8

3)

equation of energy transport, (4)
] Guilera+ 11




Theoretical modelling of the stellar structure
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composition change due to nuclear burning:



Theoretical modelling of the stellar structure

e mass conservation (R

momentum conservation (2)8

3)

transport of energy (4)

Guilera+ 11

composition change due to nuclear burning:

(=Zjkrijk + ke i) (5)




How to solve a set of
joint partial differential equations?

Numerical integration.

Henyey, Forbes & Gould (1964)
Astrophysical Journal, vol. 139, p.306

A NEW METHOD OF AUTOMATIC COMPUTATION
OF STELLAR EVOLUTION

L. G. HENYEY, J. E. ForBESs, AND N. L. GouLp
Berkeley Astronomical Department, University of California
Received July 26, 1963

ABSTRACT

A method is described for obtaining time sequences of stellar models describing evolutionary changes.
This method is a modified version of an earlier one described by Henyey, Wilets, Bshm, LeLevier, and
Levée (1959). The modifications involve the evaluation of all quantities at the same discrete points. The
technique provides for coupling the interior integrations to those for model atmospheres based on mixing-
length theory. The scope of the formalism is such as to provide for a wide range of calculations for spheri-

cally symmetric configurations in hydrostatic equilibrium,



Henyey, Forbes & Gould (1964):
A New Method of Automatic Computation of Stellar Evolution

II. THE BASIC DIFFERENTIAL EQUATIONS

The development of the modified form of the computational technique requires that
the basic equations be put into a suitable form. Let £ be a Lagrangian variable and let
m(£) be the mass inclosed within a sphere designated by £, that is,

m=m(§), O0<Et<I1. (1)
Here it is understood that
m0) =0, and m(l)=M, (2)

where M is the total mass.

and for radiative-conductive transfer of energy
GP_,_Gmp 61’=0 £+ 3kpl _t?_?'
d¢ r? 9§ ’ 9t ' 64nolr? 0¢

(where «, the opacity, includes the effect of electron conduction) or for convection

=1, (6)

ar
I —_— 2 — 1

m 47!'1’,(} —0, — P— _)=0, (7)

Y TSR
ol The symbol m’ represents the ordinary derivative of m(£) with respect to £. As usual p
— | e— = — P represents the density, P the pressure, 7" the temperature, / the luminosity, and r the
at ot radius at any interface within the star. E is the internal energy per unit mass and e the
thermonuclear energy release per unit mass and time. M, R, and L are the mass, radius,

and luminosity of the whole star.



Henyey, Forbes & Gould (1964):
A New Method of Automatic Computation of Stellar Evolution

Discretiza tion: Continuous Discretized
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These days...

MES A

MODULES FOR EXPERIMENTS IN STELLAR
ASTROPHYSICS




Explosions!
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One Black Hole

doesn’t make a
GW emission though...
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We need at least two...

N—

Gravitational wave Black hole Spacetime
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Binary stars...

...next time.



	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 


